scholarly journals Activation of the cellular transcription factor AP-1 in herpes simplex virus infected cells is dependent on the viral immediate-early protein ICPO

1991 ◽  
Vol 19 (18) ◽  
pp. 4879-4883 ◽  
Author(s):  
Kyung-Lib Jang ◽  
Bemd Pulverer ◽  
James R. Woodgett ◽  
David S. Latchman
1992 ◽  
Vol 284 (3) ◽  
pp. 667-673 ◽  
Author(s):  
K L Jang ◽  
D S Latchman

Infection with herpes simplex virus (HSV) results in an increase in the transcription of the endogenous Alu repeated sequence by RNA polymerase III. This effect is also observed in uninfected cells stably transformed with a plasmid expressing the HSV immediate-early protein ICP27 or in cells transfected with the gene encoding this protein. Both uninfected cells expressing ICP27 and cells infected with virus producing functional ICP27 display increased activity of the cellular transcription factor TFIIIC when compared with untreated cells. This increase is not observed, however, in cells infected with a mutant strain of virus which does not produce ICP27. Hence ICP27 induces elevated Alu transcription by activating transcription factor TFIIIC, which is the limiting factor for such transcription. This is the first report of increased activity of a cellular transcription factor during HSV infection, when most cellular gene activity is inhibited.


1991 ◽  
Vol 275 (2) ◽  
pp. 369-372
Author(s):  
D S Latchman

Although lytic infection with herpes simplex virus (HSV) causes the repression of most host cell biosynthesis, it results in increased transcription of the cellular gene encoding the U4 snRNA, leading to accumulation of this snRNA. In contrast, no increased transcription of the gene encoding the U2 snRNA or accumulation of this RNA is observed in infected cells. These effects are mediated by the HSV virion protein Vmw65, which activates the U4 gene but does not affect the U2 gene. The significance of this difference between the U2 and U4 genes is discussed with regard to the presence in both of these genes of an identical octamer-binding site for the cellular transcription factor Oct-1 which complexes with Vmw65.


2006 ◽  
Vol 80 (19) ◽  
pp. 9720-9729 ◽  
Author(s):  
Jennifer A. Corcoran ◽  
Wei-Li Hsu ◽  
James R. Smiley

ABSTRACT Herpes simplex virus (HSV) stifles cellular gene expression during productive infection of permissive cells, thereby diminishing host responses to infection. Host shutoff is achieved largely through the complementary actions of two viral proteins, ICP27 and virion host shutoff (vhs), that inhibit cellular mRNA biogenesis and trigger global mRNA decay, respectively. Although most cellular mRNAs are thus depleted, some instead increase in abundance after infection; perhaps surprisingly, some of these contain AU-rich instability elements (AREs) in their 3′-untranslated regions. ARE-containing mRNAs normally undergo rapid decay; however, their stability can increase in response to signals such as cytokines and virus infection that activate the p38/MK2 mitogen-activated protein kinase (MAPK) pathway. We and others have shown that HSV infection stabilizes the ARE mRNA encoding the stress-inducible IEX-1 mRNA, and a previous report from another laboratory has suggested vhs is responsible for this effect. However, we now report that ICP27 is essential for IEX-1 mRNA stabilization whereas vhs plays little if any role. A recent report has documented that ICP27 activates the p38 MAPK pathway, and we detected a strong correlation between this activity and stabilization of IEX-1 mRNA by using a panel of HSV type 1 (HSV-1) isolates bearing an array of previously characterized ICP27 mutations. Furthermore, IEX-1 mRNA stabilization was abrogated by the p38 inhibitor SB203580. Taken together, these data indicate that the HSV-1 immediate-early protein ICP27 alters turnover of the ARE-containing message IEX-1 by activating p38. As many ARE mRNAs encode proinflammatory cytokines or other immediate-early response proteins, some of which may limit viral replication, it will be of great interest to determine if ICP27 mediates stabilization of many or all ARE-containing mRNAs.


Sign in / Sign up

Export Citation Format

Share Document