scholarly journals GRNdb: decoding the gene regulatory networks in diverse human and mouse conditions

2020 ◽  
Vol 49 (D1) ◽  
pp. D97-D103
Author(s):  
Li Fang ◽  
Yunjin Li ◽  
Lu Ma ◽  
Qiyue Xu ◽  
Fei Tan ◽  
...  

Abstract Gene regulatory networks (GRNs) formed by transcription factors (TFs) and their downstream target genes play essential roles in gene expression regulation. Moreover, GRNs can be dynamic changing across different conditions, which are crucial for understanding the underlying mechanisms of disease pathogenesis. However, no existing database provides comprehensive GRN information for various human and mouse normal tissues and diseases at the single-cell level. Based on the known TF-target relationships and the large-scale single-cell RNA-seq data collected from public databases as well as the bulk data of The Cancer Genome Atlas and the Genotype-Tissue Expression project, we systematically predicted the GRNs of 184 different physiological and pathological conditions of human and mouse involving >633 000 cells and >27 700 bulk samples. We further developed GRNdb, a freely accessible and user-friendly database (http://www.grndb.com/) for searching, comparing, browsing, visualizing, and downloading the predicted information of 77 746 GRNs, 19 687 841 TF-target pairs, and related binding motifs at single-cell/bulk resolution. GRNdb also allows users to explore the gene expression profile, correlations, and the associations between expression levels and the patient survival of diverse cancers. Overall, GRNdb provides a valuable and timely resource to the scientific community to elucidate the functions and mechanisms of gene expression regulation in various conditions.

2017 ◽  
Author(s):  
F. Alexander Wolf ◽  
Philipp Angerer ◽  
Fabian J. Theis

We present Scanpy, a scalable toolkit for analyzing single-cell gene expression data. It includes preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing and simulation of gene regulatory networks. The Python-based implementation efficiently deals with datasets of more than one million cells and enables easy interfacing of advanced machine learning packages. Code is available fromhttps://github.com/theislab/scanpy.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christopher A Jackson ◽  
Dayanne M Castro ◽  
Giuseppe-Antonio Saldi ◽  
Richard Bonneau ◽  
David Gresham

Understanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse transcriptionally barcoded gene deletion mutants in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We benchmarked a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,228 interactions.


Author(s):  
Anastasiya Belyaeva ◽  
Chandler Squires ◽  
Caroline Uhler

Abstract Summary Designing interventions to control gene regulation necessitates modeling a gene regulatory network by a causal graph. Currently, large-scale gene expression datasets from different conditions, cell types, disease states, and developmental time points are being collected. However, application of classical causal inference algorithms to infer gene regulatory networks based on such data is still challenging, requiring high sample sizes and computational resources. Here, we describe an algorithm that efficiently learns the differences in gene regulatory mechanisms between different conditions. Our difference causal inference (DCI) algorithm infers changes (i.e. edges that appeared, disappeared, or changed weight) between two causal graphs given gene expression data from the two conditions. This algorithm is efficient in its use of samples and computation since it infers the differences between causal graphs directly without estimating each possibly large causal graph separately. We provide a user-friendly Python implementation of DCI and also enable the user to learn the most robust difference causal graph across different tuning parameters via stability selection. Finally, we show how to apply DCI to single-cell RNA-seq data from different conditions and cell states, and we also validate our algorithm by predicting the effects of interventions. Availability and implementation Python package freely available at http://uhlerlab.github.io/causaldag/dci. Supplementary information Supplementary data are available at Bioinformatics online.


EvoDevo ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
David Viktor Dylus ◽  
Anna Czarkwiani ◽  
Josefine Stångberg ◽  
Olga Ortega-Martinez ◽  
Sam Dupont ◽  
...  

2019 ◽  
Author(s):  
Christopher A Jackson ◽  
Dayanne M Castro ◽  
Giuseppe-Antonio Saldi ◽  
Richard Bonneau ◽  
David Gresham

AbstractUnderstanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for transcriptionally barcoding gene deletion mutants and performing scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse genotypes in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We developed, and benchmarked, a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,018 interactions. Our study establishes a general approach to gene regulatory network reconstruction from scRNAseq data that can be employed in any organism.


2020 ◽  
Author(s):  
Daniel Osorio ◽  
Yan Zhong ◽  
Guanxun Li ◽  
Jianhua Z. Huang ◽  
James J. Cai

AbstractConstructing and comparing gene regulatory networks (GRNs) from single-cell RNA sequencing (scRNAseq) data has the potential to reveal critical components in the underlying regulatory networks regulating different cellular transcriptional activities. Here, we present a robust and powerful machine learning workflow—scTenifoldNet—for comparative GRN analysis of single cells. The scTenifoldNet workflow, consisting of principal component regression, low-rank tensor approximation, and manifold alignment, constructs and compares transcriptome-wide single-cell GRNs (scGRNs) from different samples to identify gene expression signatures shifting with cellular activity changes such as those associated with pathophysiological processes and responses to environmental perturbations. We used simulated data to benchmark scTenifoldNet’s performance, and then applied scTenifoldNet to several real data sets. In real-data applications, scTenifoldNet identified highly specific changes in gene regulation in response to acute morphine treatment, an antibody anticancer drug, gene knockout, double-stranded RNA stimulus, and amyloid-beta plaques in various types of mouse and human cells. We anticipate that scTenifoldNet can help achieve breakthroughs through constructing and comparing scGRNs in poorly characterized biological systems, by deciphering the full cellular and molecular complexity of the data.HighlightsscTenifoldNet is a machine learning workflow built upon principal component regression, low-rank tensor approximation, and manifold alignmentscTenifoldNet uses single-cell RNA sequencing (scRNAseq) data to construct single-cell gene regulatory networks (scGRNs)scTenifoldNet compares scGRNs of different samples to identify differentially regulated genesReal-data applications demonstrate that scTenifoldNet accurately detects specific signatures of gene expression relevant to the cellular systems tested.Short abstractWe present scTenifoldNet—a machine learning workflow built upon principal component regression, low-rank tensor approximation, and manifold alignment—for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing (scRNAseq). scTenifoldNet reveals regulatory changes in gene expression between samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific gene expression programs associated with different biological processes, providing critical insights into the underlying mechanism of regulatory networks governing cellular transcriptional activities.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhana Duren ◽  
Wenhui Sophia Lu ◽  
Joseph G. Arthur ◽  
Preyas Shah ◽  
Jingxue Xin ◽  
...  

AbstractThe comparison of gene regulatory networks between diseased versus healthy individuals or between two different treatments is an important scientific problem. Here, we propose sc-compReg as a method for the comparative analysis of gene expression regulatory networks between two conditions using single cell gene expression (scRNA-seq) and single cell chromatin accessibility data (scATAC-seq). Our software, sc-compReg, can be used as a stand-alone package that provides joint clustering and embedding of the cells from both scRNA-seq and scATAC-seq, and the construction of differential regulatory networks across two conditions. We apply the method to compare the gene regulatory networks of an individual with chronic lymphocytic leukemia (CLL) versus a healthy control. The analysis reveals a tumor-specific B cell subpopulation in the CLL patient and identifies TOX2 as a potential regulator of this subpopulation.


Sign in / Sign up

Export Citation Format

Share Document