scholarly journals Histone H2a mRNA interacts with Lin28 and contains a Lin28-dependent posttranscriptional regulatory element

2009 ◽  
Vol 37 (13) ◽  
pp. 4256-4263 ◽  
Author(s):  
Bingsen Xu ◽  
Yingqun Huang
Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 659
Author(s):  
Sebastiano Giallongo ◽  
Oriana Lo Re ◽  
Gabriela Lochmanová ◽  
Luca Parca ◽  
Francesco Petrizzelli ◽  
...  

Background: Gene expression in eukaryotic cells can be governed by histone variants, which replace replication-coupled histones, conferring unique chromatin properties. MacroH2A1 is a histone H2A variant containing a domain highly similar to H2A and a large non-histone (macro) domain. MacroH2A1, in turn, is present in two alternatively exon-spliced isoforms: macroH2A1.1 and macroH2A1.2, which regulate cell plasticity and proliferation in a remarkably distinct manner. The N-terminal and the C-terminal tails of H2A histones stem from the nucleosome core structure and can be target sites for several post-translational modifications (PTMs). MacroH2A1.1 and macroH2A1.2 isoforms differ only in a few amino acids and their ability to bind NAD-derived metabolites, a property allegedly conferring their different functions in vivo. Some of the modifications on the macroH2A1 variant have been identified, such as phosphorylation (T129, S138) and methylation (K18, K123, K239). However, no study to our knowledge has analyzed extensively, and in parallel, the PTM pattern of macroH2A1.1 and macroH2A1.2 in the same experimental setting, which could facilitate the understanding of their distinct biological functions in health and disease. Methods: We used a mass spectrometry-based approach to identify the sites for phosphorylation, acetylation, and methylation in green fluorescent protein (GFP)-tagged macroH2A1.1 and macroH2A1.2 expressed in human hepatoma cells. The impact of selected PTMs on macroH2A1.1 and macroH2A1.2 structure and function are demonstrated using computational analyses. Results: We identified K7 as a new acetylation site in both macroH2A1 isoforms. Quantitative comparison of histone marks between the two isoforms revealed significant differences in the levels of phosphorylated T129 and S170. Our computational analysis provided evidence that the phosphorylation status in the intrinsically disordered linker region in macroH2A1 isoforms might represent a key regulatory element contributing to their distinct biological responses. Conclusions: Taken together, our results report different PTMs on the two macroH2A1 splicing isoforms as responsible for their distinct features and distribution in the cell.


1998 ◽  
Vol 72 (6) ◽  
pp. 5085-5092 ◽  
Author(s):  
John E. Donello ◽  
Jonathan E. Loeb ◽  
Thomas J. Hope

ABSTRACT The hepatitis B virus posttranscriptional regulatory element (HBVPRE) is a cis-acting RNA element that partially overlaps with enhancer I and is required for the cytoplasmic accumulation of HBV surface RNAs. We find that the closely related woodchuck hepatitis virus (WHV), which has been shown to lack a functional enhancer I, also contains a posttranscriptional regulatory element (WPRE). Deletion analysis suggests that the WPRE consists of three independent subelements. Comparison of the bipartite HBVPRE and tripartite WPRE activities reveals that the tripartite WPRE is two to three times more active than the bipartite HBVPRE. Mutation of a single WPRE subelement decreases WPRE activity to the level of the HBVPRE. Bipartite and tripartite chimeras of the WPRE and HBVPRE possess activities which suggest that elements containing three subelements are posttranscriptionally stronger than those containing two. These data demonstrate that the posttranscriptional regulatory element is conserved within the mammalian hepadnaviruses and that its strength is determined by the number of subelements within the RNA.


1999 ◽  
Vol 73 (4) ◽  
pp. 2886-2892 ◽  
Author(s):  
Romain Zufferey ◽  
John E. Donello ◽  
Didier Trono ◽  
Thomas J. Hope

ABSTRACT The expression of genes delivered by retroviral vectors is often inefficient, a potential obstacle for their widespread use in human gene therapy. Here, we explored the possibility that the posttranscriptional regulatory element of woodchuck hepatitis virus (WPRE) might help resolve this problem. Insertion of the WPRE in the 3′ untranslated region of coding sequences carried by either oncoretroviral or lentiviral vectors substantially increased their levels of expression in a transgene-, promoter- and vector-independent manner. The WPRE thus increased either luciferase or green fluorescent protein production five- to eightfold, and effects of a comparable magnitude were observed with either the immediate-early cytomegalovirus or the herpesvirus thymidine kinase promoter and with both human immunodeficiency virus- and murine leukemia virus-based vectors. The WPRE exerted this influence only when placed in the sense orientation, consistent with its predicted posttranscriptional mechanism of action. These results demonstrate that the WPRE significantly improves the performance of retroviral vectors and emphasize that posttranscriptional regulation of gene expression should be taken into account in the design of gene delivery systems.


1996 ◽  
Vol 70 (7) ◽  
pp. 4345-4351 ◽  
Author(s):  
J E Donello ◽  
A A Beeche ◽  
G J Smith ◽  
G R Lucero ◽  
T J Hope

2001 ◽  
Vol 75 (22) ◽  
pp. 10779-10786 ◽  
Author(s):  
Wei-Qing Zang ◽  
Bin Li ◽  
Pei-Yong Huang ◽  
Michael M. C. Lai ◽  
T. S. Benedict Yen

ABSTRACT The hepatitis B virus posttranscriptional regulatory element (PRE) is an RNA element that increases the expression of unspliced mRNAs, apparently by facilitating their export from the nucleus. We have identified a cellular protein that binds to the PRE as the polypyrimidine tract binding protein (PTB), which shuttles rapidly between the nucleus and the cytoplasm. Mutants of the PRE with mutations in PTB binding sites show markedly decreased activity, while cells that stably overexpress PTB show increased PRE-dependent gene expression. Export of PTB from the nucleus, like PRE function, is blocked by a mutant form of Ran binding protein 1 but not by leptomycin B. Therefore, PTB is important for PRE activity and appears to function as an export factor for PRE-containing mRNAs.


Sign in / Sign up

Export Citation Format

Share Document