scholarly journals A nested parallel experiment demonstrates differences in intensity-dependence between RNA-seq and microarrays

2015 ◽  
pp. gkv636 ◽  
Author(s):  
David G. Robinson ◽  
Jean Y. Wang ◽  
John D. Storey
2014 ◽  
Author(s):  
David G. Robinson ◽  
Jean Wang ◽  
John D. Storey

Understanding the differences between microarray and RNA-Seq technologies for measuring gene expression is necessary for informed design of experiments and choice of data analysis methods. Previous comparisons have come to sometimes contradictory conclusions, which we suggest result from a lack of attention to the intensity-dependent nature of variation generated by the technologies. To examine this trend, we carried out a parallel nested experiment performed simultaneously on the two technologies that systematically split variation into four stages (treatment, biological variation, library preparation, and chip/lane noise), allowing a separation and comparison of the sources of variation in a well-controlled cellular system,Saccharomyces cerevisiae. With this novel dataset, we demonstrate that power and accuracy are more dependent on per-gene read depth in RNA-Seq than they are on fluorescence intensity in microarrays. However, we carried out qPCR validations which indicate that microarrays may demonstrate greater systematic bias in low-intensity genes than in RNA-seq.


1989 ◽  
Vol 162 ◽  
Author(s):  
J. A. Freitas ◽  
S. G. Bishop

ABSTRACTThe temperature and excitation intensity dependence of photoluminescence (PL) spectra have been studied in thin films of SiC grown by chemical vapor deposition on Si (100) substrates. The low power PL spectra from all samples exhibited a donor-acceptor pair PL band which involves a previously undetected deep acceptor whose binding energy is approximately 470 meV. This deep acceptor is found in every sample studied independent of growth reactor, suggesting the possibility that this background acceptor is at least partially responsible for the high compensation observed in Hall effect studies of undoped films of cubic SiC.


Sign in / Sign up

Export Citation Format

Share Document