scholarly journals MicroRNA-202 maintains spermatogonial stem cells by inhibiting cell cycle regulators and RNA binding proteins

2016 ◽  
pp. gkw1287 ◽  
Author(s):  
Jian Chen ◽  
Tanxi Cai ◽  
Chunwei Zheng ◽  
Xiwen Lin ◽  
Guojun Wang ◽  
...  
2018 ◽  
Author(s):  
Douglas F. Porter ◽  
Aman Prasad ◽  
Brian H. Carrick ◽  
Peggy Kroll-Connor ◽  
Marvin Wickens ◽  
...  

AbstractMetazoan PUF (Pumilio and FBF) RNA-binding proteins regulate various biological processes, but a common theme across phylogeny is stem cell regulation. In Caenorhabditis elegans, FBF (fem-3 Binding Factor) maintains germline stem cells regardless of which gamete is made, but FBF also functions in the process of spermatogenesis. We have begun to “disentangle” these biological roles by asking which FBF targets are gamete-independent, as expected for stem cells, and which are gamete-specific. Specifically, we compared FBF iCLIP binding profiles in adults making sperm to those making oocytes. Normally, XX adults make oocytes. To generate XX adults making sperm, we used a fem-3(gf) mutant requiring growth at 25°; for comparison, wild-type oogenic hermaphrodites were also raised at 25°. Our FBF iCLIP data revealed FBF binding sites in 1522 RNAs from oogenic adults and 1704 RNAs from spermatogenic adults. More than half of these FBF targets were independent of germline gender. We next clustered RNAs by FBF-RNA complex frequencies and found four distinct blocks. Block I RNAs were enriched in spermatogenic germlines, and included validated target fog-3, while Block II and III RNAs were common to both genders, and Block IV RNAs were enriched in oogenic germlines. Block II (510 RNAs) included almost all validated FBF targets and was enriched for cell cycle regulators. Block III (21 RNAs) was enriched for RNA-binding proteins, including previously validated FBF targets gld-1 and htp-1. We suggest that Block I RNAs belong to the FBF network for spermatogenesis, and that Blocks II and III are associated with stem cell functions.


Development ◽  
2017 ◽  
Vol 144 (19) ◽  
pp. 3454-3464 ◽  
Author(s):  
Ching-Po Yang ◽  
Tamsin J. Samuels ◽  
Yaling Huang ◽  
Lu Yang ◽  
David Ish-Horowicz ◽  
...  

2010 ◽  
Vol 22 (9) ◽  
pp. 85
Author(s):  
E. A. McLaughlin ◽  
B. A. Fraser ◽  
V. Pye ◽  
M. Bigland ◽  
N. A. Siddall ◽  
...  

Mammalian meiosis is a tightly regulated process involving specialized cell cycle progression and morphogenetic changes. We have demonstrated that the Musashi family of RNA binding proteins is implicated in the regulation of spermatogonial stem self renewal and germ cell differentiation. Here we describe the novel mechanism by which the Musashi family proteins, Msi1 and Msi2, act to control exit from spermatogonial mitotic amplification and normal entry into meiosis. Gene and protein analysis indicated overlapping Msi1 and Msi2 profiles in enriched populations of isolated germ cells and reciprocal subcellular expression patterns in spermatogonia and pachytene spermatocytes/ round spermatids in testes sections. Recombinant Msi1 protein-RNA pulldown and microarray analysis coupled with in vitro shRNA knockdown studies in spermatogonial culture and subsequent immunoprecipitation and qPCR established that Msi1 targeted Msi2 mRNA for post transcriptional translational repression. Immunoprecipitation of Msi2 target mRNA and subsequent qPCR together with in vitro shRNA knockdown studies inround spermatidculture identified a cell cycle inhibitor protein CDKN1C (p57kip2) as the principal target of Msi2 translational inhibition. Immunolocalisation of CDKN1C protein indicated that expression of this cell cycle regulator coincided with the nuclear import of Msi1 and the appearance of cytoplasmic Msi2 expression in early pachytene spermatocytes. Using a transgenic Msi1 overexpression mouse model in conjunction with quantitative gene and protein expression, we confirmed Msi1 targeting of Msi2 and subsequent Msi2 targeting of CDKN1C for translational repression in vivo. Ectopic overexpression of Msi1 in germ cellsinduces substantial Msi2 downregulation and aberrant CDKN1C expression, resulting in abnormal spermatogenic differentiation, germ cell apoptosis/arrest and sterility. In conclusion, our results indicate a sophisticated molecular switch encompassing cell cycle protein regulation by Musashi family proteins, is required for normal exit from mitotic division, entry into meiosis and post meiotic germ cell differentiation.


2018 ◽  
Vol 28 (10) ◽  
pp. 1548-1560.e5 ◽  
Author(s):  
Junyi Chen ◽  
Kamila Kalinowska ◽  
Benedikt Müller ◽  
Julia Mergner ◽  
Rainer Deutzmann ◽  
...  

2009 ◽  
Vol 126 ◽  
pp. S279-S280
Author(s):  
Jean-Philippe Dullin ◽  
Caroline Borday ◽  
Morgane Locker ◽  
Johanna Hamdache ◽  
Karine Parain ◽  
...  

2018 ◽  
Author(s):  
Luisa M Arake de Tacca ◽  
Mia C Pulos ◽  
Stephen N Floor ◽  
Jamie Cate

Polypyrimidine tract-binding proteins (PTBPs) are RNA binding proteins that regulate a number of post-transcriptional events. Human PTBP1 transits between the nucleus and cytoplasm and is thought to regulate RNA processes in both. However, information about PTBP1 mRNA isoforms and regulation of PTPB1 expression remain incomplete. Here we mapped the major PTBP1 mRNA isoforms in HEK293T cells, and identified alternative 5' and 3' untranslated regions (5' UTRs, 3' UTRs) as well as alternative splicing patterns in the protein coding region. We also assessed how the observed PTBP1 mRNA isoforms contribute to PTBP1 expression in different phases of the cell cycle. Previously, PTBP1 mRNAs were shown to crosslink to eukaryotic translation initiation factor 3 (eIF3). We find that eIF3 binds differently to each PTBP1 mRNA isoform in a cell cycle-dependent manner. We also observe a strong correlation between eIF3 binding to PTBP1 mRNAs and repression of PTBP1 levels during the S phase of the cell cycle. Our results provide evidence of translational regulation of PTBP1 protein levels during the cell cycle, which may affect downstream regulation of alternative splicing and translation mediated by PTBP1 protein isoforms.


Sign in / Sign up

Export Citation Format

Share Document