scholarly journals ChiPPI: a novel method for mapping chimeric protein–protein interactions uncovers selection principles of protein fusion events in cancer

2017 ◽  
Vol 45 (12) ◽  
pp. 7094-7105 ◽  
Author(s):  
Milana Frenkel-Morgenstern ◽  
Alessandro Gorohovski ◽  
Somnath Tagore ◽  
Vaishnovi Sekar ◽  
Miguel Vazquez ◽  
...  
Author(s):  
Rohan Dandage ◽  
Caroline M Berger ◽  
Isabelle Gagnon-Arsenault ◽  
Kyung-Mee Moon ◽  
Richard Greg Stacey ◽  
...  

Abstract Hybrids between species often show extreme phenotypes, including some that take place at the molecular level. In this study, we investigated the phenotypes of an interspecies diploid hybrid in terms of protein-protein interactions inferred from protein correlation profiling. We used two yeast species, Saccharomyces cerevisiae and Saccharomyces uvarum, which are interfertile, but yet have proteins diverged enough to be differentiated using mass spectrometry. Most of the protein-protein interactions are similar between hybrid and parents, and are consistent with the assembly of chimeric complexes, which we validated using an orthogonal approach for the prefoldin complex. We also identified instances of altered protein-protein interactions in the hybrid, for instance in complexes related to proteostasis and in mitochondrial protein complexes. Overall, this study uncovers the likely frequent occurrence of chimeric protein complexes with few exceptions, which may result from incompatibilities or imbalances between the parental proteins.


2016 ◽  
Vol 5 (4) ◽  
pp. 93-98
Author(s):  
Wen Sun ◽  
Lin Han ◽  
Wenmao Xu ◽  
Yazhen Sun

AbstractObjective: The objective of this work is to search for a novel method to explore the disrupted pathways associated with periodontitis (PD) based on the network level.Methods: Firstly, the differential expression genes (DEGs) between PD patients and cognitively normal subjects were inferred based on LIMMA package. Then, the protein-protein interactions (PPI) in each pathway were explored by Empirical Bayesian (EB) co-expression program. Specifically, we determined the 100th weight value as the threshold value of the disrupted pathways of PPI by constructing the randomly model and confirmed the weight value of each pathway. Meanwhile, we dissected the disrupted pathways under the weight value > the threshold value. Pathways enrichment analyses of DEGs were carried out based on Expression Analysis Systematic Explored (EASE) test. Finally, the better method was selected based on the more rich and significant obtained pathways by comparing the two methods.Results: After the calculation of LIMMA package, we estimated 524 DEGs in all. Then we determined 0.115222 as the threshold value of the disrupted pathways of PPI. When the weight value>0.115222, there were 258 disrupted pathways of PPI enriched in. Additionally, we observed those 524 DEGs that were enriched in 4 pathways under EASE=0.1.Conclusion: We proposed a novel network method inferring the disrupted pathway for PD. The disrupted pathways might be underlying biomarkers for treatment associated with PD.


1990 ◽  
Vol 10 (9) ◽  
pp. 4565-4573 ◽  
Author(s):  
L J Ransone ◽  
P Wamsley ◽  
K L Morley ◽  
I M Verma

The products of the Jun and Fos proto-oncogenes form a heterodimer that binds to and activates transcription from 12-O-tetradecanoylphorbol-13-acetate-responsive promoter elements (TGACTCA) and AP-1-binding sites (TGACATCA). These two proteins belong to a family of related transcription factors which contain similar domains required for protein dimerization and DNA binding but display different protein and DNA binding specificities. The basic region, required for DNA binding, is followed by a leucine zipper structure, a domain that mediates protein-protein interactions. To assess the role of these two domains in three related proteins, Fos, Jun, and CREB, we carried out extensive domain-swapping analysis. We found that (i) dimers formed by two Jun leucine zipper-containing proteins were unable to bind DNA as efficiently as a Fos-Jun combination, regardless of the source of the basic region; (ii) the Fos leucine zipper was unable to form either homo- or heterodimers with a chimeric protein containing a Fos leucine zipper; (iii) the Fos basic region was capable of binding to an AP-1 site; (iv) replacement of the Jun amino terminus with that of CREB had little effect on dimerization, whereas replacement with the amino terminus of Fos disrupted both protein-protein and protein-DNA interactions; (v) changes in relative affinities of the Fos and Jun basic regions for the AP-1 element were dependent on the secondary contributions of amino-terminal residues; and (vi) the Fos-Jun chimeric constructs cooperated in transcriptional transactivation of the Jun promoter in NIH 3T3 cells.


1990 ◽  
Vol 10 (9) ◽  
pp. 4565-4573
Author(s):  
L J Ransone ◽  
P Wamsley ◽  
K L Morley ◽  
I M Verma

The products of the Jun and Fos proto-oncogenes form a heterodimer that binds to and activates transcription from 12-O-tetradecanoylphorbol-13-acetate-responsive promoter elements (TGACTCA) and AP-1-binding sites (TGACATCA). These two proteins belong to a family of related transcription factors which contain similar domains required for protein dimerization and DNA binding but display different protein and DNA binding specificities. The basic region, required for DNA binding, is followed by a leucine zipper structure, a domain that mediates protein-protein interactions. To assess the role of these two domains in three related proteins, Fos, Jun, and CREB, we carried out extensive domain-swapping analysis. We found that (i) dimers formed by two Jun leucine zipper-containing proteins were unable to bind DNA as efficiently as a Fos-Jun combination, regardless of the source of the basic region; (ii) the Fos leucine zipper was unable to form either homo- or heterodimers with a chimeric protein containing a Fos leucine zipper; (iii) the Fos basic region was capable of binding to an AP-1 site; (iv) replacement of the Jun amino terminus with that of CREB had little effect on dimerization, whereas replacement with the amino terminus of Fos disrupted both protein-protein and protein-DNA interactions; (v) changes in relative affinities of the Fos and Jun basic regions for the AP-1 element were dependent on the secondary contributions of amino-terminal residues; and (vi) the Fos-Jun chimeric constructs cooperated in transcriptional transactivation of the Jun promoter in NIH 3T3 cells.


2014 ◽  
Vol 12 (06) ◽  
pp. 1442008 ◽  
Author(s):  
Jung-Hsien Chiang ◽  
Jiun-Huang Ju

Protein–protein interactions (PPIs) are involved in the majority of biological processes. Identification of PPIs is therefore one of the key aims of biological research. Although there are many databases of PPIs, many other unidentified PPIs could be buried in the biomedical literature. Therefore, automated identification of PPIs from biomedical literature repositories could be used to discover otherwise hidden interactions. Search engines, such as Google, have been successfully applied to measure the relatedness among words. Inspired by such approaches, we propose a novel method to identify PPIs through semantic similarity measures among protein mentions. We define six semantic similarity measures as features based on the page counts retrieved from the MEDLINE database. A machine learning classifier, Random Forest, is trained using the above features. The proposed approach achieve an averaged micro-F of 71.28% and an averaged macro-F of 64.03% over five PPI corpora, an improvement over the results of using only the conventional co-occurrence feature (averaged micro-F of 68.79% and an averaged macro-F of 60.49%). A relation-word reinforcement further improves the averaged micro-F to 71.3% and averaged macro-F to 65.12%. Comparing the results of the current work with other studies on the AIMed corpus (ranging from 77.58% to 85.1% in micro-F, 62.18% to 76.27% in macro-F), we show that the proposed approach achieves micro-F of 81.88% and macro-F of 64.01% without the use of sophisticated feature extraction. Finally, we manually examine the newly discovered PPI pairs based on a literature review, and the results suggest that our approach could extract novel protein–protein interactions.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Wenzheng Ma ◽  
Yi Cao ◽  
Wenzheng Bao ◽  
Bin Yang ◽  
Yuehui Chen

The interactions between proteins play important roles in several organisms, and such issue can be involved in almost all activities in the cell. The research of protein-protein interactions (PPIs) can make a huge contribution to the prevention and treatment of diseases. Currently, many prediction methods based on machine learning have been proposed to predict PPIs. In this article, we propose a novel method ACT-SVM that can effectively predict PPIs. The ACT-SVM model maps protein sequences to digital features, performs feature extraction twice on the protein sequence to obtain vector A and descriptor CT, and combines them into a vector. Then, the feature vectors of the protein pair are merged as the input of the support vector machine (SVM) classifier. We utilize nonredundant H. pylori and human dataset to verify the prediction performance of our method. Finally, the proposed method has a prediction accuracy of 0.727897 for H. pylori data and a prediction accuracy of 0.838799 for human dataset. The results demonstrate that this method can be called a stable and reliable prediction model of PPIs.


2017 ◽  
Author(s):  
Wenting Liu ◽  
Jianjun Liu ◽  
Jagath C. Rajapakse

AbstractFunctional similarity between genes is widely used in many bioinformatics applications including detecting molecular pathways, finding co-expressed genes, predicting protein-protein interactions, and prioritization of candidate genes. Methods evaluating functional similarity of genes are mostly based on semantic similarity of gene ontology (GO) terms. Though there are hundreds of functional similarity measures available in the literature, none of them considers the enrichment of the GO terms by the querying gene pair. We propose a novel method to incorporate GO enrichment into the existing functional similarity measures. Our experiments show that the inclusion of gene enrichment significantly improves the performance of 44 widely used functional similarity measures, especially in the prediction of sequence homologies, gene expression correlations, and protein-protein interactions.Software availabilityThe software (python code) and all the benchmark datasets evaluation (R script) are available at https://gitlab.com/liuwt/EnrichFunSim.


Sign in / Sign up

Export Citation Format

Share Document