scholarly journals FP050STUDYING MECHANISMS UNDERLYING CYSTOGENESIS IN NPHP6 IN AN EX VIVO MURINE COLLECTING DUCT CELL LINE

2015 ◽  
Vol 30 (suppl_3) ◽  
pp. iii81-iii81
Author(s):  
Shalabh Srivastava ◽  
Ann Marie Hynes ◽  
Colin Miles ◽  
Rachel H Giles ◽  
John A Sayer
Keyword(s):  
Ex Vivo ◽  
2004 ◽  
Vol 19 (5) ◽  
pp. 1069-1076 ◽  
Author(s):  
J. C. de Jong ◽  
P. H. G. M. Willems ◽  
M. Goossens ◽  
A. Vandewalle ◽  
L. P. W. J. van den Heuvel ◽  
...  

2003 ◽  
Vol 285 (4) ◽  
pp. F664-F673 ◽  
Author(s):  
Michelle L. Gumz ◽  
Michael P. Popp ◽  
Charles S. Wingo ◽  
Brian D. Cain

The mineralocorticoid aldosterone is a major regulator of Na+ and acid-base balance and control of blood pressure. Although the long-term effects of aldosterone have been extensively studied, the early aldosterone-responsive genes remain largely unknown. Using DNA array technology, we have characterized changes in gene expression after 1 h of exposure to aldosterone in a mouse inner medullary collecting duct cell line, mIMCD-3. Results from three independent microarray experiments revealed that the expression of many transcripts was affected by aldosterone treatment. Northern blot analysis confirmed the upregulation of four distinct transcripts identified by the microarray analysis, namely, the serum and glucose-regulated kinase sgk, connective tissue growth factor, period homolog, and preproendothelin. Immunoblot analysis for preproendothelin demonstrated increased protein expression. Following the levels of the four transcripts over time showed that each had a unique pattern of expression, suggesting that the cellular response to aldosterone is complex. The results presented here represent a novel list of early aldosterone-responsive transcripts and provide new avenues for elucidating the mechanism of acute aldosterone action in the kidney.


1996 ◽  
Vol 271 (6) ◽  
pp. F1234-F1238 ◽  
Author(s):  
Z. Zhang ◽  
D. M. Cohen

The mitogen-activated protein kinases (MAPKs), p38 and jun kinase (JNK), are activated by diverse stressors in cells of nonrenal medullary origin. Epithelial cells of the renal medulla are among the very few cells of higher eukaryotes routinely subjected to hyperosmotic stress, composed of principally NaCl and urea. Hyperosmotic NaCl activated p38 and JNK in a time- and dose-dependent fashion in cells of the murine terminal inner medullary collecting duct cell line (mIMCD3) as determined by immune complex kinase assay. Hyperosmotic urea exerted a minimal effect upon only p38 activation, which was evident only at 5 min. The NaCl effect was dose dependent to 800 mosmol/kgH2O; 800 mosmol/kgH2O urea, in contrast, exerted no effect. Consistent with these observations, NaCl (800 mosmol/kgH2O) but not urea (800 mosmol/kgH2O) increased tyrosine phosphorylation of p38 and JNK at 10 min. Therefore, even in the extremely osmotolerant renal medullary mIMCD3 cell line, derived from a tissue adapted for routine exposure to elevated osmolality, hypertonic NaCl activated two stress-responsive MAPKs. Urea, in contrast, exerted virtually no effect; therefore, cellular protection from urea stress operates through a mechanism distinct from the stress-responsive MAPKs.


2001 ◽  
Vol 98 (5) ◽  
pp. 2712-2716 ◽  
Author(s):  
M. Robert-Nicoud ◽  
M. Flahaut ◽  
J.-M. Elalouf ◽  
M. Nicod ◽  
M. Salinas ◽  
...  

2001 ◽  
Vol 179 (1) ◽  
pp. 63-70 ◽  
Author(s):  
C. Capurro ◽  
V. Rivarola ◽  
A. Kierbel ◽  
B. Escoubet ◽  
N. Farman ◽  
...  

2003 ◽  
Vol 104 (3) ◽  
pp. 217-221 ◽  
Author(s):  
Kimberly M. HOOPER ◽  
Robert J. UNWIN ◽  
Michael SUTTERS

Cyst expansion in autosomal dominant polycystic kidney disease (ADPKD) requires accumulation of fluid into the cyst lumen, which is probably driven by aberrant chloride secretion by the cyst lining epithelium. Extracellular ATP is a potent stimulus for chloride secretion in many epithelial systems, and provides a plausible mechanism for secretion in ADPKD. Therefore the link between polycystin-1 and ATP-stimulated chloride secretion was investigated in the M1 cortical collecting duct cell line. M1 cells were stably transfected with a glucocorticoid-inducible cytoplasmic C-terminal polycystin-1 construct fused to a membrane expression cassette. Induction of fusion protein expression was associated with augmentation of ATP-stimulated transepithelial chloride secretion. After nystatin-induced permeabilization of the basolateral membrane, it was determined that expression of the polycystin fusion protein modulated an ATP-responsive apical chloride conductance. It is concluded that up-regulation of ATP-stimulated chloride secretion might play a significant role in cyst expansion in ADPKD.


Sign in / Sign up

Export Citation Format

Share Document