scholarly journals P02.16 Evaluating the therapeutic potential of anti-CD19 chimeric antigen receptor T-cells in a murine model of human primary CNS lymphoma using long-term in vivo imaging

2018 ◽  
Vol 20 (suppl_3) ◽  
pp. iii275-iii275
Author(s):  
M Mulazzani ◽  
S Fräßle ◽  
S Langer ◽  
I von Mücke-Heim ◽  
V Buchholz ◽  
...  
2017 ◽  
Author(s):  
Matthias Mulazzani ◽  
Simon Fräßle ◽  
Veit Buchholz ◽  
Andreas Straube ◽  
Dirk Busch ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2523-2523 ◽  
Author(s):  
Marco Ruella ◽  
David M. Barrett ◽  
Saad S Kenderian ◽  
Olga Shestova ◽  
Ted J. Hofmann ◽  
...  

Abstract Introduction: Anti-CD19 chimeric antigen receptor T cells (CART19) and bi-specific anti-CD19/CD3 antibodies (blinatumomab) generate unprecedented complete response rates of 45-90% in relapsing/refractory acute lymphoblastic leukemia (r/r B-ALL). However, a subset of patients treated with these targeted approaches will relapse and a significant portion of these relapses are characterized by the loss of detectable CD19 (about 30% of relapses after blinatumomab and up to 50% after CART19), a clear manifestation of immunoediting. Hence, novel effective strategies are needed in order to be able to treat those patients and ideally prevent antigen-loss. CD123, the interleukin-3 receptor alpha, is involved in hematopoiesis and has been shown to be expressed in several hematologic neoplasms, including acute myeloid leukemia (AML) and more recently also B-ALL. Targeting CD123 with chimeric antigen receptor T cells (CART123) was shown to lead to deep and long-term responses in human primary AML xenografts. The goal of this study was to pre-clinically evaluate the impact of targeting CD123 and CD19 with chimeric antigen receptor T cells for the treatment and prevention of CD19-negative leukemia relapses occurring after CD19-directed therapies. Results: We analyzed the expression of CD123 in 42 r/r B-ALL samples and found that CD123 is highly and homogeneously expressed on the surface of most B-ALL blasts (81.75%, range: 5.1-99.6), making it a promising candidate for targeted therapy in B-ALL. Moreover, CD123 was also found to be expressed in the putative leukemia stem cells (LSC), identified as CD34-pos CD38-neg. Notably, in some Ph+ B-ALL samples we found CD19-ve CD123+ve cells with a BCR-ABL translocation by FISH, suggesting that these cells too are malignant. The expression of CD123 was detected in all (n=6) CD19-negative B-ALL blasts analyzed after relapse from CART19 treatment (Figure 1). These findings indicate that CD123 represents an ideal marker to target CD19-neg ALL blasts occurring after CART19 or blinatumomab. Therefore, we generated anti-CD123 chimeric antigen receptor T cells costimulated with 4-1-BB using a lentiviral vector (CART123). We then evaluated the CART123 anti-B-ALL efficacy both in vitro and in vivo against primary B-ALL and cell line (NALM-6). CART123 showed intense anti-B-ALL ex vivo activity, as defined by specific CD107a degranulation, cytokine production, cytotoxicity and proliferation, not statistically different from that of CART19. In order to test the role of CART123 to target CD19-negative relapses we developed a novel in vivo model, engrafting immunodeficient NSG mice with blasts obtained from a patient relapsing with CD19-ve disease after CART19 treatment. At day 14 mice were randomized to receive CART19, CART123 or control T cells (untransduced, UTD). CART19 and control T cell treated mice had no anti-tumor activity, while CART123 led to complete eradication of the disease and long-term survival. We next developed a murine model to test the hypothesis that a combined approach simultaneously targeting CD123 and CD19 could treat and prevent CD19-negative relapses. NSG mice were injected with a mixture of primary CD19-neg and CD19-pos blasts from the same patient that were labeled with different click beetle luciferases (red or green) in order to be able to track the respective clones in vivo. Mice were then randomized to receive UTD, CART19 or the combination of CART19 and CART123 (same total dose of T cells). As shown in Figure 2, mice treated with UTD had progression of both leukemic clones (CD19-pos and CD19-neg) while CART19 showed rapid progression mostly of the CD19-neg disease (red luciferase); on the contrary only mice treated with the combination of CART123 and CART19 showed rapid clearance of the disease, with improved overall survival (64 days for CART19, not reached for CART19+CART123). As a final strategy, we expressed both CAR19 and CAR123 in the same T cells and showed potent anti-leukemia activity (CD107a degranulation 81.7%). Conclusions: Here we demonstrate that CD123 is expressed in CD19-negative B-ALL relapses occurring after CD19-directed therapies, and that combining CART123 cells with CART19 cells is an effective therapy for the treatment and prevention of antigen-loss relapses in B-ALL murine xenografts. Disclosures Ruella: Novartis: Patents & Royalties, Research Funding. Kenderian:Novartis: Patents & Royalties, Research Funding. Scholler:Novartis: Patents & Royalties. Lacey:Novartis: Patents & Royalties, Research Funding. Melenhorst:Novartis: Patents & Royalties, Research Funding. Hunter:Surface Oncology - SAB: Membership on an entity's Board of Directors or advisory committees, Research Funding. Porter:Novartis: Patents & Royalties, Research Funding. June:University of Pennsylvania: Patents & Royalties: financial interests due to intellectual property and patents in the field of cell and gene therapy. Conflicts of interest are managed in accordance with University of Pennsylvania policy and oversight; Novartis: Research Funding. Grupp:Novartis: Consultancy, Research Funding. Gill:Novartis: Patents & Royalties, Research Funding.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Yun Bai ◽  
Shifeng Kan ◽  
Shixin Zhou ◽  
Yuting Wang ◽  
Jun Xu ◽  
...  

Abstract Chimeric antigen receptor T cell immunotherapy is a promising therapeutic strategy for treating tumors, demonstrating its efficiency in eliminating several hematological malignancies in recent years. However, a major obstacle associated with current chimeric antigen receptor T cell immunotherapy is that the limited replicative lifespan of chimeric antigen receptor T cells prohibits the long-term persistence and expansion of these cells in vivo, potentially hindering the long-term therapeutic effects of chimeric antigen receptor T cell immunotherapy. Here we showed that the transient delivery of modified mRNA encoding telomerase reverse transcriptase to human chimeric antigen receptor T cells targeting the CD19 antigen (CD19 chimeric antigen receptor T cells) would transiently elevate the telomerase activity in these cells, leading to increased proliferation and delayed replicative senescence without risk of insertion mutagenesis or immortalization. Importantly, compared to conventional CD19 chimeric antigen receptor T cells, after the transient delivery of telomerase reverse transcriptase mRNA, these CD19 chimeric antigen receptor T cells showed improved persistence and proliferation in mouse xenograft tumor models of human B-cell malignancies. Furthermore, the transfer of CD19 chimeric antigen receptor T cells after the transient delivery of telomerase reverse transcriptase mRNA enhanced long-term antitumor effects in mouse xenograft tumor models compared with conventional CD19 chimeric antigen receptor T cell transfer. The results of the present study provide an effective and safe method to improve the therapeutic potential of chimeric antigen receptor T cells, which might be beneficial for treating other types of cancer, particularly solid tumors.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A124-A124
Author(s):  
Letizia Giardino ◽  
Ryan Gilbreth ◽  
Cui Chen ◽  
Erin Sult ◽  
Noel Monks ◽  
...  

BackgroundChimeric antigen receptor (CAR)-T therapy has yielded impressive clinical results in hematological malignancies and it is a promising approach for solid tumor treatment. However, toxicity, including on-target off-tumor antigen binding, is a concern hampering its broader use.MethodsIn selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CAR bearing a low and high affinity single-chain variable fragment (scFv,) binding to the same epitope and cross-reactive with murine GPC3. We characterized low and high affinity CAR-T cells immunophenotype and effector function in vitro, followed by in vivo efficacy and safety studies in hepatocellular carcinoma (HCC) xenograft models.ResultsCompared to the high-affinity construct, the low-affinity CAR maintained cytotoxic function but did not show in vivo toxicity. High-affinity CAR-induced toxicity was caused by on-target off-tumor binding, based on the evidence that high-affinity but not low-affinity CAR, were toxic in non-tumor bearing mice and accumulated in organs with low expression of GPC3. To add another layer of safety, we developed a mean to target and eliminate CAR-T cells using anti-TNFα antibody therapy post-CAR-T infusion. This antibody functioned by eliminating early antigen-activated CAR-T cells, but not all CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from anti-tumor efficacy.ConclusionsSelecting a domain with higher off-rate improved the quality of the CAR-T cells by maintaining cytotoxic function while reducing cytokine production and activation upon antigen engagement. By exploring additional traits of the CAR-T cells post-activation, we further identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that would eliminate early activated CAR-T following antigen engagement in vivo. By combining the reduced affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.Ethics ApprovalAll animal experiments were conducted in a facility accredited by the Association for Assessment of Laboratory Animal Care (AALAC) under Institutional Animal Care and Use Committee (IACUC) guidelines and appropriate animal research approval.


2013 ◽  
Vol 1 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Evripidis Lanitis ◽  
Mathilde Poussin ◽  
Alex W. Klattenhoff ◽  
Degang Song ◽  
Raphael Sandaltzopoulos ◽  
...  

2021 ◽  
Author(s):  
Yannick D. Muller ◽  
Leonardo M.R. Ferreira ◽  
Emilie Ronin ◽  
Patrick Ho ◽  
Vinh Nguyen ◽  
...  

Infusion of regulatory T cells (Tregs) engineered with a chimeric antigen receptor (CAR) targeting donor-derived human leukocyte antigen (HLA) is a promising strategy to promote transplant tolerance. Here, we describe an anti-HLA-A2 CAR (A2-CAR) generated by grafting the complementarity-determining regions (CDRs) of a human monoclonal anti-HLA-A2 antibody into the framework regions of the Herceptin 4D5 single-chain variable fragment and fusing it with a CD28-zeta signaling domain. The CDR-grafted A2-CAR maintained the specificity of the original antibody. We then generated HLA-A2 mono-specific human CAR Tregs either by deleting the endogenous T-cell receptor (TCR) via CRISPR/Cas9 and introducing the A2-CAR using lentiviral transduction or by directly integrating the CAR construct into the TCR alpha constant locus using homology-directed repair. These A2-CAR+TCRdeficient human Tregs maintained both Treg phenotype and function in vitro. Moreover, they selectively accumulated in HLA-A2-expressing islets transplanted from either HLA-A2 transgenic mice or deceased human donors. A2-CAR+TCRdeficient Tregs did not impair the function of these HLA-A2+ islets, whereas similarly engineered A2-CAR+TCRdeficientCD4+ conventional T cells rejected the islets in less than 2 weeks. A2-CAR+TCRdeficient Tregs delayed graft-versus-host disease only in the presence of HLA-A2, expressed either by co-transferred peripheral blood mononuclear cells or by the recipient mice. Altogether, we demonstrate that genome-engineered mono-antigen-specific A2-CAR Tregs localize to HLA-A2-expressing grafts and exhibit antigen-dependent in vivo suppression, independent of TCR expression. These approaches may be applied towards developing precision Treg cell therapies for transplant tolerance.


2019 ◽  
Vol Volume 12 ◽  
pp. 9341-9350 ◽  
Author(s):  
Xiaojun Tang ◽  
Qi Tang ◽  
Yuan Mao ◽  
Xiaochen Huang ◽  
Lizhou Jia ◽  
...  

Author(s):  
Adrienne H. Long ◽  
Waleed M. Haso ◽  
Jillian P. Smith ◽  
Alec J. Walker ◽  
Terry J. Fry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document