Ultrashort Echo Time Magnetic Resonance Angiography in Follow-up of Intracranial Aneurysms Treated With Endovascular Coiling: Comparison of Time-of-Flight, Pointwise Encoding Time Reduction With Radial Acquisition, and Contrast-Enhanced Magnetic Resonance Angiography

Neurosurgery ◽  
2020 ◽  
Author(s):  
Sung-Hye You ◽  
Byungjun Kim ◽  
Kyung-Sook Yang ◽  
Bo Kyu Kim ◽  
Jaeil Ryu

Abstract BACKGROUND The optimal magnetic resonance angiography (MRA) sequence for assessing the aneurysm occlusion state or in-stent flow after endovascular coiling is not well established. OBJECTIVE To evaluate the diagnostic performance of pointwise encoding time reduction with radial acquisition (PETRA)-MRA in patients who underwent endovascular coiling relative to that of time-of-flight (TOF)-MRA and contrast-enhanced (CE)-MRA. METHODS We evaluated the aneurysm occlusion state using digital subtraction angiography (DSA) and MRA. In patients who underwent stent-assisted coiling, we estimated the visibility of in-stent flow. RESULTS We enrolled 189 patients with assessable TOF, PETRA, and CE-MRAs after coiling. In patients who underwent simple coiling (128 patients), PETRA showed a higher sensitivity in the detection of residual flow than TOF and CE (PETRA, 100%; CE, 83%; TOF, 80%). There were no significant differences in the height of residual flow between DSA (0.68 ± 1.45 mm) and PETRA (0.70 ± 1.50 mm; P = 1.000). In patients who underwent stent-assisted coiling (61 patients), PETRA showed the highest sensitivity (88%) in detecting residual flow (CE, 56%; TOF, 31%). Regarding in-stent flow, PETRA, CE, and TOF showed visual scores of ≥3 with frequencies of 96.7%, 85.2%, and 37.7%, respectively. Relative signal-to-noise ratio of PETRA (0.62 ± 0.18) was significantly higher than that of CE (0.56 ± 0.12) and TOF (0.39 ± 0.12; P < .001 for both). CONCLUSION PETRA-MRA showed excellent diagnostic performance in terms of residual flow detection and in-stent flow assessment. PETRA could be a versatile alternative sequence for following up patients with coiled aneurysm.

2021 ◽  
pp. 159101992110659
Author(s):  
Young Jin Heo ◽  
Donghyun Kim ◽  
Hae Woong Jeong ◽  
Jin Wook Baek ◽  
Da Som Kim ◽  
...  

Purpose Imaging follow-up after endovascular treatment is important; however, time-of-flight magnetic resonance angiography (TOF-MRA) has limitations associated with magnetic susceptibility and radiofrequency shielding caused by the stent and coils. We evaluated the diagnostic performance of pointwise encoding time reduction with radial acquisition (PETRA)-MRA after endovascular treatment for intracranial aneurysms. Material and methods A total of 186 patients with 211 aneurysms who underwent both pointwise encoding time reduction with radial acquisition- and time-of-flight magnetic resonance angiography in the same imaging session for follow-up after endovascular treatment. We subjectively graded the overall image quality, visualization of treated sites, and occlusion status. Results Although the overall image quality scores of pointwise encoding time reduction with radial acquisition-magnetic resonance angiography were significantly lower than those of time-of-flight magnetic resonance angiography for both observers (4.04 ± 0.81 vs. 4.85 ± 0.35 [observer 1], 4.60 ± 0.69 vs. 4.94 ± 0.24 [observer 2]) (both P < .001), the visibility of treated sites using pointwise encoding time reduction with radial acquisition-magnetic resonance angiography was significantly better than that of time-of-flight magnetic resonance angiography overall (4.27 ± 0.97 vs. 3.42 ± 1.01; P < .001), in the distal internal carotid artery (4.46 ± 0.79 vs. 3.40 ± 1.00; P < .001), and in the middle cerebral artery (4.19 ± 0.93 vs. 3.08 ± 0.53, P = 0.007). Pointwise encoding time reduction with radial acquisition-magnetic resonance angiography showed a higher area under the curve than time-of-flight magnetic resonance angiography for the evaluation of treated aneurysm occlusion, except for posterior circulation aneurysms. Conclusions Pointwise encoding time reduction with radial acquisition-magnetic resonance angiography showed better visualization of treated sites and better diagnostic performance than time-of-flight magnetic resonance angiography for anterior circulation aneurysms. However, Pointwise encoding time reduction with radial acquisition-magnetic resonance angiography showed limitations in the follow-up evaluation of posterior circulation aneurysms.


Sign in / Sign up

Export Citation Format

Share Document