Space-Time GIS

Author(s):  
May Yuan

Space-time GIS emerged in the early 1990s to incorporate temporal information and analytical functions so that GIS technology could handle both spatial and temporal data. To do so, GIS technology has to embrace spatial and temporal data throughout the processes of conceptualization, representation, computation, and visualization. Conceptualization captures ontological constructs and how they manifest themselves and relate to each other in space and time meaningfully with respect to the geographic domain of interest. Representation formalizes the conceptualized ontological constructs based on their characteristics, behaviors, and relationships to organize spatial and temporal data effectively in accordance with the geographic domain. Computation operates on digital representations of the ontological constructs to measure spatial and temporal quantities, analyze patterns, model relationships, simulate possible scenarios, and make predictions in space and time. Finally, visualization creates visual means to inspect space-time data and analytical findings throughout GIS processing. Visual analytics, furthermore, utilizes an interactive visual interface to facilitate analytical reasoning, and hence engages visualization in computation. Advances in teal-time or near real-time geospatial data acquisition as well as data streaming and machine learning methods have significantly accelerated the development of space-time GIS since 2010.

2013 ◽  
Vol 347-350 ◽  
pp. 2298-2303 ◽  
Author(s):  
Jian Hong Pan ◽  
Qin Lin ◽  
Chen Jie Cao

Based on the integration of space and time, TGIS system is the most important cornerstone for emergency rescue, while the spatial-temporal data model, in turn, is the vital foundation of TGIS. In recent years, various kinds of spatial-temporal data model have been developed. Consequently, this paper is trying to launch a research on the classification of these models and try to propose a discussion of models, including simple models, Space-time composites, models based on object and feature, and models based on object and feature. Meantime, the adaptability of the four types of models is also discussed in the paper, which shall provide reference for emergency space-time sequence and spatial-temporal data mining.


2013 ◽  
Vol 4 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Eric Delmelle ◽  
Changjoo Kim ◽  
Ningchuan Xiao ◽  
Wei Chen

With increasing availability of spatio-temporal data and the democratization of Geographical Information Systems (GIS), there has been a demand for novel statistical and visualization techniques which can explicitly integrate space and time. The paper discusses the nature of spatio-temporal data, the integration of time within GIS and the flourishing availability of spatial and temporal-explicit data over the Internet. The paper attempts to answer the fundamental question on how these large datasets can be analyzed in space and time to reveal critical patterns. The authors further elaborate on how spatial autocorrelation techniques are extended to deal with time, for point, linear, and areal features, and the impact of parameter selection, such as critical distance and time threshold to build adjacency matrices. The authors also discuss issues of space-time modeling for optimization problems.


2013 ◽  
Vol 34 (10) ◽  
pp. 2470-2474
Author(s):  
Wen-tao Du ◽  
Gui-sheng Liao ◽  
Zhi-wei Yang

GEOgraphia ◽  
2009 ◽  
Vol 2 (3) ◽  
pp. 51
Author(s):  
Gilvan Luiz Hansen

Resumo Este artigo é uma discussão introdutória acerca da importância das concepções de espaço e tempo na modernidade. O objetivo deste texto é enfatizar os aspectos teóricos e práticos dos conceitos de espaço e tempo, mediante a apresentação de três perspectivas de interpretação desta questão na filosofia desenvolvida na modernidade. Palavras-chave: Modernidade, Espaço, Tempo, Filosofia Moderna, J. Habermas.Abstract This article is an introductory debate about the importance of space and time conceptions in modernity. The objective from this text is emphasize the theoretical and practical aspects of space and time concepts, by presentation of three interpretation perspectives of this question in the philosophy developed in modernity. Keywords: Modernity, Space, Time, Modern Philosophy, J. Habermas.


2010 ◽  
Vol 22 (1) ◽  
pp. 181-195 ◽  
Author(s):  
Anthony Cordingley

This essay argues for the presence of Aristotelian ideas of cosmic order, syllogism, space and time in Beckett's . It accounts for how such ideas impact upon the novel's 'I' as he attempts to offer a philosophical 'solution' to his predicament in an underworld divorced from the revolving heavens. Beckett's study of formal logic as a student at Trinity College, Dublin and his private study of philosophy in 1932 is examined in this light; particularly his “Philosophy Notes,” along with some possible further sources for his knowledge. The essay then reveals a creative transformation of Aristotelian ideas in which led to formal innovations, such as the continuous present of its narrative.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Svenja Ipsen ◽  
Sven Böttger ◽  
Holger Schwegmann ◽  
Floris Ernst

AbstractUltrasound (US) imaging, in contrast to other image guidance techniques, offers the distinct advantage of providing volumetric image data in real-time (4D) without using ionizing radiation. The goal of this study was to perform the first quantitative comparison of three different 4D US systems with fast matrix array probes and real-time data streaming regarding their target tracking accuracy and system latency. Sinusoidal motion of varying amplitudes and frequencies was used to simulate breathing motion with a robotic arm and a static US phantom. US volumes and robot positions were acquired online and stored for retrospective analysis. A template matching approach was used for target localization in the US data. Target motion measured in US was compared to the reference trajectory performed by the robot to determine localization accuracy and system latency. Using the robotic setup, all investigated 4D US systems could detect a moving target with sub-millimeter accuracy. However, especially high system latency increased tracking errors substantially and should be compensated with prediction algorithms for respiratory motion compensation.


Genetics ◽  
1993 ◽  
Vol 133 (3) ◽  
pp. 711-727
Author(s):  
B K Epperson

Abstract The geographic distribution of genetic variation is an important theoretical and experimental component of population genetics. Previous characterizations of genetic structure of populations have used measures of spatial variance and spatial correlations. Yet a full understanding of the causes and consequences of spatial structure requires complete characterization of the underlying space-time system. This paper examines important interactions between processes and spatial structure in systems of subpopulations with migration and drift, by analyzing correlations of gene frequencies over space and time. We develop methods for studying important features of the complete set of space-time correlations of gene frequencies for the first time in population genetics. These methods also provide a new alternative for studying the purely spatial correlations and the variance, for models with general spatial dimensionalities and migration patterns. These results are obtained by employing theorems, previously unused in population genetics, for space-time autoregressive (STAR) stochastic spatial time series. We include results on systems with subpopulation interactions that have time delay lags (temporal orders) greater than one. We use the space-time correlation structure to develop novel estimators for migration rates that are based on space-time data (samples collected over space and time) rather than on purely spatial data, for real systems. We examine the space-time and spatial correlations for some specific stepping stone migration models. One focus is on the effects of anisotropic migration rates. Partial space-time correlation coefficients can be used for identifying migration patterns. Using STAR models, the spatial, space-time, and partial space-time correlations together provide a framework with an unprecedented level of detail for characterizing, predicting and contrasting space-time theoretical distributions of gene frequencies, and for identifying features such as the pattern of migration and estimating migration rates in experimental studies of genetic variation over space and time.


Author(s):  
Gayathri Nadarajan ◽  
Cheng-Lin Yang ◽  
Yun-Heh Chen-Burger ◽  
Yu-Jung Cheng ◽  
Sun-In Lin ◽  
...  

1999 ◽  
Vol 258 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Martin J. Bünner ◽  
R. Hegger

Sign in / Sign up

Export Citation Format

Share Document