scholarly journals 1101. Implementing a Beta-Lactam Therapeutic Drug Monitoring Program: Experience from a Large Academic Medical Center

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S642-S642
Author(s):  
Venugopalan Veena ◽  
Malva Hamza ◽  
Barbara A Santevecchi ◽  
Kathryn DeSear ◽  
Kartikeya Cherabuddi ◽  
...  

Abstract Background Beta-lactams (BL) are the cornerstone of antimicrobial treatment for infections. Beta-lactam therapeutic drug monitoring (BL-TDM) optimizes drug concentrations to ensure maximal efficacy and minimal toxicity. The goals of this study were to describe the implementation process of a BL-TDM program and to further describe our experience using BL-TDM in clinical practice. Methods This was a retrospective review of adult patients with available BL-TDM between January 2016 and November 2019 at the University of Florida (UF) Health Shands Hospital. Total serum concentrations of BL were measured in the Infectious Diseases Pharmacokinetics Lab (IDPL) at UF, using a validated ultrahigh pressure liquid chromatography assay with triple quadrupole mass spectroscopy (LC-MS-MS). At our institution, TDM is available for 11 BLs and in-house assays are performed from Mon-Fri for most BLs. Results A total of 3,030 BL concentrations were obtained. An analysis was performed on the first BL-TDM encounter in 1,438 patients. The median age was 57 years (IQR, 41-69) and the median BMI was 27.5 kg/m2 (IQR, 22.5-34.5). On the day of BL-TDM, the median serum creatinine was 0.83 (IQR, 0.59-1.30). Fifty-one percent of patients (n=735) were in an ICU at the time of BL-TDM with a median SOFA score of 6 (IQR, 3-9). BL-TDM was most frequently performed on cefepime (61%, n=882), piperacillin (15%, n=218), and meropenem (11%, n=151). The BL was administered as a continuous infusion in 211 (15%) patients. An interim analysis of 548 patients showed that BL-TDM was performed a median of 2 days (IQR, 1-4) from the start of BL therapy and resulted in a dosage adjustment in 26% (n=145). Conclusion BL-TDM was performed in older, non-obese patients with normal renal function. Over half of the evaluated patients were in an ICU at the time of TDM. This finding emphasizes the value of BL-TDM in the ICU setting because altered pharmacokinetics during critical illness has been linked to enhanced BL clearance. Interestingly, BL-TDM resulted in dosage adjustment in 1 in 4 patients who were receiving licensed BL dosing regimens, thus highlighting the role of TDM in dose individualization. BL-TDM was performed most commonly within the 72-hours of therapy initiation. Early BL-TDM has been shown to improve patient outcomes and should be promoted. Disclosures Venugopalan Veena, PharmD, Melinta (Other Financial or Material Support, Received a stipend for participation in a drug registry)Merck (Other Financial or Material Support, Received a stipend for participation in a drug registry) Charles A. Peloquin, Pharm.D., Nothing to disclose


2021 ◽  
Vol 14 ◽  
pp. 175628482199990
Author(s):  
Sonia Facchin ◽  
Andrea Buda ◽  
Romilda Cardin ◽  
Nada Agbariah ◽  
Fabiana Zingone ◽  
...  

Anti-drug antibodies can interfere with the activity of anti-tumor necrosis factor (TNF) agents by increasing drug clearance via direct neutralization. The presence of anti-drug antibodies is clinically relevant when trough drug concentrations are undetectable or sub-therapeutic. However, traditional immunoassay is not easily and rapidly accessible, making the translation of the results into treatment adjustment difficult. The availability of a point-of-care (POC) test for therapeutic drug monitoring (TDM) might represent an important step forward for improving the management of inflammatory bowel disease (IBD) patients in clinical practice. In this pilot study, we compared the results obtained with POC tests with those obtained by enzyme-linked immunosorbent assay (ELISA) in a group of IBD patients treated with Infliximab (IFX). We showed that POC test can reliably detect presence of antibody-to-IFX with 100% of specificity and 76% sensitivity, in strong agreement with the ELISA test ( k-coefficient = 0.84).



Author(s):  
Susanne Weber ◽  
Sara Tombelli ◽  
Ambra Giannetti ◽  
Cosimo Trono ◽  
Mark O’Connell ◽  
...  

AbstractObjectivesTherapeutic drug monitoring (TDM) plays a crucial role in personalized medicine. It helps clinicians to tailor drug dosage for optimized therapy through understanding the underlying complex pharmacokinetics and pharmacodynamics. Conventional, non-continuous TDM fails to provide real-time information, which is particularly important for the initial phase of immunosuppressant therapy, e.g., with cyclosporine (CsA) and mycophenolic acid (MPA).MethodsWe analyzed the time course over 8 h of total and free of immunosuppressive drug (CsA and MPA) concentrations measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in 16 kidney transplant patients. Besides repeated blood sampling, intravenous microdialysis was used for continuous sampling. Free drug concentrations were determined from ultracentrifuged EDTA-plasma (UC) and compared with the drug concentrations in the respective microdialysate (µD). µDs were additionally analyzed for free CsA using a novel immunosensor chip integrated into a fluorescence detection platform. The potential of microdialysis coupled with an optical immunosensor for the TDM of immunosuppressants was assessed.ResultsUsing LC-MS/MS, the free concentrations of CsA (fCsA) and MPA (fMPA) were detectable and the time courses of total and free CsA comparable. fCsA and fMPA and area-under-the-curves (AUCs) in µDs correlated well with those determined in UCs (r≥0.79 and r≥0.88, respectively). Moreover, fCsA in µDs measured with the immunosensor correlated clearly with those determined by LC-MS/MS (r=0.82).ConclusionsThe new microdialysis-supported immunosensor allows real-time analysis of immunosuppressants and tailor-made dosing according to the AUC concept. It readily lends itself to future applications as minimally invasive and continuous near-patient TDM.



2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Alan Abdulla ◽  
Puck van den Broek ◽  
Tim M.J. Ewoldt ◽  
Anouk E. Muller ◽  
Henrik Endeman ◽  
...  


2019 ◽  
Vol 87 (1) ◽  
pp. 22-29 ◽  
Author(s):  
Irene Aícua‐Rapún ◽  
Pascal André ◽  
Andrea O. Rossetti ◽  
Philippe Ryvlin ◽  
Andreas F. Hottinger ◽  
...  


2005 ◽  
Vol 18 (6) ◽  
pp. 444-460 ◽  
Author(s):  
Michele Y. Splinter

Eight new antiepileptic drugs (AEDs) have been approved for use within the United States within the past decade. They are felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, tiagabine, topiramate, and zonisamide. These afford clinicians with more options to increase efficacy and tolerability in the treatment of patients with epilepsy. Pharmacokinetic properties and drug interactions with other AEDs and other medications taken for comorbidities are individually discussed for each of these new agents. Drug concentrations are not routinely monitored for these newer agents, and there have been few studies designed to investigate their concentration-effect relationships. For most of these medications, the concentrations observed in responders and nonresponders overlap considerably and levels associated with efficacy are often associated with adverse events, complicating the definition of target ranges. Also, epilepsy manifests itself sporadically causing difficulty in clinically monitoring efficacy of medications. Therapeutic drug monitoring provides for the individualization of treatment for these agents, which is important because they demonstrate significant variability in inter- and intraindividual pharmaco-kinetic properties. Therapeutic drug monitoring also allows for identification of noncompliance, drug interactions, and toxicity. Current knowledge of the relationships between efficacy, toxicity, and drug concentrations is discussed.



2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S667-S668
Author(s):  
S Gleeson ◽  
K Sugrue ◽  
M Buckley ◽  
J McCarthy

Abstract Background Therapeutic drug monitoring (TDM) is the clinical practice of measuring serum drug concentrations to guide clinical decision making. Achieving therapeutic drug concentrations has been associated with clinical, endoscopic and histological outcomes in IBD. The use of TDM offers a more personalised treatment approach and is associated with sustained clinical remission. Proactive TDM was introduced to the Mercy University Hospital in 2014 for all patients on biologics. Methods One hundred patients receiving biologic infusion (Infliximab) were evaluated post induction (week 12) for therapeutic drug trough concentration and for clinical response. Serum samples were taken from all IBD patients at week 12. Biologic response assessment forms were complete for all patients to assess symptom improvement. Results Thirty-five per cent of patients had sub therapeutic trough levels at week 12. They subsequently received 3 increased doses of 10mgs/kg and levels were rechecked. Of these 90% achieved therapeutic levels after the dose escalation. 65% of patients had therapeutic levels at week 12. There was a correlation between therapeutic trough levels and patient reported improvement of clinical symptoms in 85% of respondents. Conclusion TDM in our unit facilitates appropriate dose 100 patients receiving biologic infusion (Infliximab) were evaluated post induction (week 12) for therapeutic drug trough concentration and for clinical response. Serum samples were taken from all IBD patients at week 12. Biologic response assessment forms were complete for all patients to assess symptom improvement.



1998 ◽  
Vol 44 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Philip D Walson

Abstract Therapeutic drug monitoring (TDM) is commonly used to maintain “therapeutic” drug concentrations. Even in compliant patients, with “average” drug kinetics, TDM is useful to identify the causes of unwanted or unexpected responses, prevent unnecessary diagnostic testing, improve clinical outcomes, and even save lives. TDM has greatest promise in certain special populations who are: (a) prone to under- or overrespond to usual dosing regimens, (b) least able to tolerate, recognize, or communicate drug effects, or who are (c) intentionally or accidentally misdosed. TDM is especially useful in patients at the extremes of age, in adolescents, and in patients who are either taking multiple drugs or expressing unusual pharmacokinetics as a result of physiological, environmental, or genetic causes. Less-well-appreciated uses of TDM include prevention of dangerousunderdosing of patients, investigation of adverse drug reactions, and identification of serious medication errors, even for a number of drugs that are not traditionally monitored. TDM can be useful for some drugs in any patient and for most drugs in some special populations.



2012 ◽  
Vol 34 (2) ◽  
pp. 160-164 ◽  
Author(s):  
Bhavik M. Patel ◽  
Jennifer Paratz ◽  
Natalie C. See ◽  
Michael J. Muller ◽  
Michael Rudd ◽  
...  


2016 ◽  
Vol 44 (12) ◽  
pp. 302-302
Author(s):  
Jeffrey Cies ◽  
Wayne Moore ◽  
Adela Enache ◽  
Arun Chopra




Sign in / Sign up

Export Citation Format

Share Document