scholarly journals 1202. Multimodal Sequencing of a Clonal Case Cluster of Carbapenem-Resistant Citrobacter Reveals Unexpectedly Rapid Dynamics of KPC3-Containing Plasmids

2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S364-S364
Author(s):  
Roby Bhattacharyya ◽  
Alejandro Pironti ◽  
Bruce J Walker ◽  
Abigail Manson ◽  
Virginia Pierce ◽  
...  

Abstract Background Carbapenem-resistant Enterobacteriaceae (CRE) are a major public health threat. We report four clonally related Citrobacter freundii isolates harboring the blaKPC-3 carbapenemase in April–May 2017 that are nearly identical to a strain from 2014 at the same institution. Despite differing by ≤5 single nucleotide polymorphisms (SNPs), these isolates exhibited dramatic differences in carbapenemase plasmid architecture. Methods We sequenced four carbapenem-resistant C. freundii isolates from 2017 and compared them with an ongoing CRE surveillance project at our institution. SNPs were identified from Illumina MiSeq data aligned to a reference genome using the variant caller Pilon. Plasmids were assembled from Illumina and Oxford Nanopore sequencing data using Unicycler. Results The four 2017 isolates differed from one another by 0–5 chromosomal SNPs; two were identical. With one exception, these isolates differed by >38,000 SNPs from 25 C. freundii isolates sequenced from 2013 to 2017 at the same institution for CRE surveillance. The exception was a 2014 isolate that differed by 13–16 SNPs from each 2017 isolate, with 13 SNPs common to all four. Each C. freundii isolate harbored wild-type blaKPC-3. Despite the close relationship among the 2017 cluster, the plasmids harboring the blaKPC-3 genes differed dramatically: the carbapenemase occurred in one of the two different plasmids, with rearrangements between these plasmids across isolates. The related 2014 isolate harbored both plasmids, each with a separate copy of blaKPC-3. No transmission chains were found between any of the affected patients. Conclusion WGS confirmed clonality among four contemporaneous blaKPC-3-containing C. freundii isolates, and marked similarity with a 2014 isolate, within an institution. That only 13–16 SNPs varied between the 2014 and 2017 isolates suggests durable persistence of the blaKPC-3 gene within this lineage in a hospital ecosystem. The plasmids harboring these carbapenemase genes proved remarkably plastic, with plasmid loss and rearrangements occurring on the same time scale as two to three chromosomal point mutations. Combining short and long-read sequencing in a case cluster uniquely revealed unexpectedly rapid dynamics of carbapenemase plasmids, providing critical insight into their manner of spread. Disclosures M. J. Ferraro, SeLux Diagnostics: Scientific Advisor and Shareholder, Consulting fee. D. C. Hooper, SeLux Diagnostics: Scientific Advisor, Consulting fee.

2020 ◽  
Author(s):  
Aki Hirabayashi ◽  
Koji Yahara ◽  
Satomi Mitsuhashi ◽  
So Nakagawa ◽  
Tadashi Imanishi ◽  
...  

Carbapenem-resistant Enterobacteriaceae (CRE) represent a serious threat to public health due to limited management of severe infections and high mortality. The rate of resistance of Enterobacteriaceae isolates to major antimicrobials, including carbapenems, is much higher in Vietnam than in Western countries, but the reasons remain unknown due to the lack of genomic epidemiology research. A previous study suggested that carbapenem resistance genes, such as the carbapenemase gene bla NDM-1 , spread via plasmids among Enterobacteriaceae in Vietnam. In this study, we performed detection and molecular characterization of bla NDM-1 -carrying plasmids in CRE isolated in Vietnam, and identified several possible cases of horizontal transfer of plasmids both within and among species of bacteria. Twenty-five carbapenem-resistant isolates from Enterobacteriaceae clinically isolated in a reference medical institution in Hanoi were sequenced on Illumina short-read sequencers, and 12 isolates harboring bla NDM-1 were sequenced on an Oxford Nanopore Technologies long-read sequencer to obtain complete plasmid sequences. Most of the plasmids co-carried genes conferring resistance to clinically relevant antimicrobials, including third-generation cephalosporins, aminoglycosides, and fluoroquinolones, in addition to bla NDM-1 , leading to multidrug resistance of their bacterial hosts. These results provide insight into the genetic basis of CRE in Vietnam, and could help control nosocomial infections.


2019 ◽  
Author(s):  
Xiaoling Yu ◽  
Wen Zhang ◽  
Zhiping Zhao ◽  
Chengsong Ye ◽  
Shuyan Zhou ◽  
...  

Abstract The enhancing incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP)-mediated infections in Mengchao Hepatobiliary Hospital of Fujian Medical University in 2017 promoted this investigation to study gene phenotypes and resistance genes of emergence regarding the CRKP strains. In current study, seven inpatients are enrolled in the hospital with complete treatments. The carbapenem-resistant K. pneumoniae whole genome is sequenced using MiSeq short-read and Oxford Nanopore long-read sequencing technology. Prophages are identified to assess genetic diversity within CRKP genomes. The investigation encompassed eight CRKP strains that collected from the patients enrolled as well as the environment, which illustrate that bla KPC-2 is responsible for phenotypic resistance in six CRKP strains that K . pneumoniae sequence type (ST-11) is inferred. The plasmid with IncR, ColRNAI and pMLST type with IncF[F33:A-:B-] co-exist in all ST-11 with KPC-2-producing CRKP strains. Along with carbapenemases, all K. pneumoniae strains harbor two or three extended spectrum β-lactamase (ESBL)-producing genes. F osA gene is detected amongst all the CRKP strains. The oqxA and oqxB expressions in CRKP strains may lead to carbapenem resistance since antimicrobials are expelled from pathogenic bacteria by efflux pump. The single nucleotide polymorphisms (SNP) markers are indicated and validated among all CRKP strains, providing valuable clues for distinguishing carbapenem-resistant strains from conventional K. pneumoniae .


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoling Yu ◽  
Wen Zhang ◽  
Zhiping Zhao ◽  
Chengsong Ye ◽  
Shuyan Zhou ◽  
...  

Abstract Background The enhancing incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP)-mediated infections in Mengchao Hepatobiliary Hospital of Fujian Medical University in 2017 is the motivation behind this investigation to study gene phenotypes and resistance-associated genes of emergence regarding the CRKP strains. In current study, seven inpatients are enrolled in the hospital with complete treatments. The carbapenem-resistant K. pneumoniae whole genome is sequenced using MiSeq short-read and Oxford Nanopore long-read sequencing technology. Prophages are identified to assess genetic diversity within CRKP genomes. Results The investigation encompassed eight CRKP strains that collected from the patients enrolled as well as the environment, which illustrate that blaKPC-2 is responsible for phenotypic resistance in six CRKP strains that K. pneumoniae sequence type (ST11) is informed. The plasmid with IncR, ColRNAI and pMLST type with IncF[F33:A-:B-] co-exist in all ST11 with KPC-2-producing CRKP strains. Along with carbapenemases, all K. pneumoniae strains harbor two or three extended spectrum β-lactamase (ESBL)-producing genes. fosA gene is detected amongst all the CRKP strains. The single nucleotide polymorphisms (SNP) markers are indicated and validated among all CRKP strains, providing valuable clues for distinguishing carbapenem-resistant strains from conventional K. pneumoniae. Conclusions ST11 is the main CRKP type, and blaKPC-2 is the dominant carbapenemase gene harbored by clinical CRKP isolates from current investigations. The SNP markers detected would be helpful for characterizing CRKP strain from general K. pneumoniae. The data provides insights into effective strategy developments for controlling CRKP and nosocomial infection reductions.


2019 ◽  
Author(s):  
Xiaoling Yu ◽  
Wen Zhang ◽  
Zhiping Zhao ◽  
Chengsong Ye ◽  
Shuyan Zhou ◽  
...  

Abstract Background The enhancing incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP)-mediated infections in Mengchao Hepatobiliary Hospital of Fujian Medical University in 2017 is the motivation behind this investigation to study gene phenotypes and resistance-associated genes of emergence regarding the CRKP strains. In current study, seven inpatients are enrolled in the hospital with complete treatments. The carbapenem-resistant K. pneumoniae whole genome is sequenced using MiSeq short-read and Oxford Nanopore long-read sequencing technology. Prophages are identified to assess genetic diversity within CRKP genomes. Results The investigation encompassed eight CRKP strains that collected from the patients enrolled as well as the environment, which illustrate that blaKPC-2 is responsible for phenotypic resistance in six CRKP strains that K. pneumoniae sequence type (ST11) is informed. The plasmid with IncR, ColRNAI and pMLST type with IncF[F33:A-:B-] co-exist in all ST11 with KPC-2-producing CRKP strains. Along with carbapenemases, all K. pneumoniae strains harbor two or three extended spectrum β-lactamase (ESBL)-producing genes. fosA gene is detected amongst all the CRKP strains. The single nucleotide polymorphisms (SNP) markers are indicated and validated among all CRKP strains, providing valuable clues for distinguishing carbapenem-resistant strains from conventional K. pneumoniae. Conclusions ST11 is the main CRKP type, and blaKPC-2 is the dominant carbapenemase gene harbored by clinical CRKP isolates from current investigations. The SNP markers detected would be helpful for characterizing CRKP strain from general K. pneumoniae. The data provides insights into effective strategy developments for controlling CRKP and nosocomial infection reductions.


2019 ◽  
Author(s):  
Xiaoling Yu ◽  
Wen Zhang ◽  
Zhiping Zhao ◽  
Chengsong Ye ◽  
Shuyan Zhou ◽  
...  

Abstract Ba ckgrou nd The enhancing incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP)-mediated infections in Mengchao Hepatobiliary Hospital of Fujian Medical University in 2017 is the motivation behind this investigation to study gene phenotypes and resistance-associated genes of emergence regarding the CRKP strains. In current study, seven inpatients are enrolled in the hospital with complete treatments. The carbapenem-resistant K. pneumoniae whole genome is sequenced using MiSeq short-read and Oxford Nanopore long-read sequencing technology. Prophages are identified to assess genetic diversity within CRKP genomes. Results The investigation encompassed eight CRKP strains that collected from the patients enrolled as well as the environment, which illustrate that bla KPC-2 is responsible for phenotypic resistance in six CRKP strains that K . pneumoniae sequence type (ST11) is informed. The plasmid with IncR, ColRNAI and pMLST type with IncF[F33:A-:B-] co-exist in all ST11 with KPC-2-producing CRKP strains. Along with carbapenemases, all K. pneumoniae strains harbor two or three extended spectrum β-lactamase (ESBL)-producing genes. f osA gene is detected amongst all the CRKP strains. The single nucleotide polymorphisms (SNP) markers are indicated and validated among all CRKP strains, providing valuable clues for distinguishing carbapenem-resistant strains from conventional K. pneumoniae . Co nclusions ST11 is the main CRKP type, and bla KPC-2 is the dominant carbapenemase gene harbored by clinical CRKP isolates from current investigations. The SNP markers detected would be helpful for characterizing CRKP strain from general K. pneumoniae. The data provides insights into effective strategy developments for controlling CRKP and nosocomial infection reductions.


2019 ◽  
Vol 8 (45) ◽  
Author(s):  
Hiroki Yu ◽  
Makoto Taniguchi ◽  
Kazuma Uesaka ◽  
Apirak Wiseschart ◽  
Kusol Pootanakit ◽  
...  

Staphylococcus arlettae is one coagulase-negative species in the bacterial genus Staphylococcus. Here, we describe the closed complete genome sequence of S. arlettae strain P2, which was obtained using a hybrid approach combining Oxford Nanopore long-read and Illumina MiSeq short-read sequencing data.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhixing Feng ◽  
Jose C. Clemente ◽  
Brandon Wong ◽  
Eric E. Schadt

AbstractCellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, and co-infection of multiple pathogens. Detecting and phasing minor variants play an instrumental role in deciphering cellular genetic heterogeneity, but they are still difficult tasks because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, provide an opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrate that iGDA can accurately reconstruct haplotypes in closely related strains of the same species (divergence ≥0.011%) from long-read metagenomic data.


2020 ◽  
Author(s):  
Zhixing Feng ◽  
Jose Clemente ◽  
Brandon Wong ◽  
Eric E. Schadt

AbstractCellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, co-infection of multiple pathogens. Detecting and phasing minor variants, which is to determine whether multiple variants are from the same haplotype, play an instrumental role in deciphering cellular genetic heterogeneity, but are still difficult because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, have provided an unprecedented opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrated that iGDA can accurately reconstruct haplotypes in closely-related strains of the same species (divergence ≥ 0.011%) from long-read metagenomic data. Our approach, therefore, presents a significant advance towards the complete deciphering of cellular genetic heterogeneity.


2019 ◽  
Author(s):  
Xiaoling Yu ◽  
Wen Zhang ◽  
Zhiping Zhao ◽  
Chengsong Ye ◽  
Shuyan Zhou ◽  
...  

AbstractThe enhancing incidence of carbapenem-resistant Klebsiella pneumoniae (CRKP)-mediated infections in Mengchao Hepatobiliary Hospital of Fujian Medical University in 2017 is the motivation behind this investigation to study gene phenotypes and resistance-associated genes of emergence regarding the CRKP strains. In current study, seven inpatients are enrolled in the hospital with complete treatments. The carbapenem-resistant K. pneumoniae whole genome is sequenced using MiSeq short-read and Oxford Nanopore long-read sequencing technology. Prophages are identified to assess genetic diversity within CRKP genomes. The investigation encompassed eight CRKP strains that collected from the patients enrolled as well as the environment, which illustrate that blaKPC-2 is responsible for phenotypic resistance in six CRKP strains that K. pneumoniae sequence type (ST11) is informed. The plasmid with IncR, ColRNAI and pMLST type with IncF[F33:A-:B-] co-exist in all ST11 with KPC-2-producing CRKP strains. Along with carbapenemases, all K. pneumoniae strains harbor two or three extended spectrum β-lactamase (ESBL)-producing genes. fosA gene is detected amongst all the CRKP strains. The single nucleotide polymorphisms (SNP) markers are indicated and validated among all CRKP strains, providing valuable clues for distinguishing carbapenem-resistant strains from conventional K. pneumoniae. In conclusion, ST11 is the main CRKP type, and blaKPC-2 is the dominant carbapenemase gene harbored by clinical CRKP isolates from current investigations.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Kimberly M Davenport ◽  
J Bret Taylor ◽  
Dillan Henslee ◽  
Claire Southerland ◽  
Joel Yelich ◽  
...  

Abstract Bitter taste perception in sheep can lead to avoidance of specific types of forage, such as sagebrush, which is present on many rangeland grazing systems in the Intermountain West. In humans, bitter taste perception is influenced by variation in several TAS2R genes, including more extensively studied TAS2R38 and TAS2R16. We hypothesize that variation in taste receptor genes in sheep is associated with bitter taste. Therefore, the objective of this study was to examine variation in TAS2R genes in relation to consumption of a bitter tasting compound phenylthiocarbamide (PTC) which determines bitter “taster” and “non-taster” status in humans. Rambouillet and Targhee rams (n = 26) were offered various concentrations of PTC solution (0.2–12.29 mM) and water in a side-by-side presentation during two experiments. Blood was collected for DNA isolation and sequencing. Nineteen TAS2R genes were amplified and sequenced with long read Oxford Nanopore MinION technology. A total of 1,049 single nucleotide polymorphisms (SNPs) and 26 haplotypes were identified in these genes. Of these, 24 SNPs and 11 haplotypes were significantly (P < 0.05) associated with PTC consumption in TAS2R3, TAS2R5, TAS2R8, TAS2R9, TAS2R16, TAS2R31-like, TAS2R38, TAS2R39, and TAS2R42-like. Over 50% of the SNPs resulted in a change in amino acid sequence and several resided in potential regulatory regions, which could have downstream functional consequences and influence bitter taste perception in sheep. Further research is needed to validate these associations and elucidate the mechanisms that link variation in TAS2R genes to bitter taste perception in sheep. This may enable producers to select sheep more likely to consume bitter forage such as sagebrush as a flock and rangeland management strategy.


Sign in / Sign up

Export Citation Format

Share Document