scholarly journals Unusual presentation of pulmonary blastomycosis complicated by amphotericin-induced refractory electrolyte abnormalities

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Pool Tobar ◽  
Alejandro Sanchez-Nadales ◽  
Elena Caldeira ◽  
Peguy Saad

ABSTRACT Blastomyces dermatitidis is an endemic mold infection commonly seen in the midwestern of the USA and rarely affects pregnant women. The most common presentation is a pulmonary infection with variable degrees of severity. Of note, the clinical and radiographic findings of pulmonary blastomycosis can be mistaken for other pulmonary pathologies, thus earning the title of ‘the great pretender’. The treatment of choice of infected pregnant patients is amphotericin B, which is known to produce electrolyte imbalances. However, it infrequently causes severe, prolonged and profound hypokalemia and hypomagnesemia. We present the case of a 27-year-old pregnant patient with pulmonary blastomycosis presenting with a lung mass suspicious of malignancy and treated with amphotericin B with subsequent prolonged refractory hypokalemia and hypomagnesemia. Keywords pulmonary blastomycosis pregnancy biopsy computed tomography angiography liposomal amphotericin B

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Suresh Ambati ◽  
Emma C. Ellis ◽  
Tuyetnhu Pham ◽  
Zachary A. Lewis ◽  
Xiaorong Lin ◽  
...  

ABSTRACT Invasive fungal diseases cause millions of deaths each year. There are currently approximately 300,000 acute cases of aspergillosis, most of which result from a pulmonary infection of immunocompromised patients by the common soil organism and opportunistic pathogen Aspergillus fumigatus. Patients are treated with antifungal drugs, such as amphotericin B (AmB). However, AmB has serious limitations due to human organ toxicity. AmB is slightly less toxic if loaded in liposomes, such as AmBisome or AmB-loaded liposomes (AmB-LLs). Even with antifungal therapy, recurrent infections are common, and 1-year fatality rates may exceed 50%. We have previously shown that coating AmB-LLs with the extracellular oligomannan-binding domain of the C-type lectin receptor Dectin-2 (DEC2-AmB-LLs) effectively targets DEC2-AmB-LLs to cell walls, exopolysaccharide matrices, and biofilms of fungal pathogens in vitro. In vitro, DEC2-AmB-LLs reduce the effective dose of AmB for 95% inhibition and killing of A. fumigatus 10-fold compared to that of untargeted AmB-LLs. Herein we tested the antifungal activity of DEC2-AmB-LLs relative to that of untargeted AmB-LLs in immunosuppressed mice with pulmonary aspergillosis. Remarkably, DEC2-AmB-LLs bound 30-fold more efficiently to A. fumigatus at sites of infection in the lungs. Furthermore, Dectin-2-targeted liposomes delivering AmB at a dose of 0.2 mg/kg of body weight significantly reduced the fungal burden in lungs compared to results with untargeted AmB-LLs at 0.2 mg/kg and micellar voriconazole at 20 mg/kg and prolonged mouse survival. By dramatically increasing the efficacy of antifungal drugs at low doses, targeted liposomes have the potential to create a new clinical paradigm to treat diverse fungal diseases. IMPORTANCE Invasive aspergillosis (IA) generally results from a pulmonary infection of immunocompromised patients by the common soil organism and opportunistic pathogen Aspergillus fumigatus. The susceptible population has expanded rapidly due to the increased number of cancer patients with immunocompromising chemotherapy and transplant patients taking immunosuppressants. Patients are treated with antifungals, such as liposomal amphotericin B, with per-patient costs exceeding $50,000 in the United States. However, AmB has serious side effects due to host toxicity, which limits its usage and contributes to the lack of fungal clearance in patients at safe doses. Fifty percent of IA patients die within a year. Herein, we employed liposomal amphotericin B coated with the innate immune receptor Dectin-2 to direct antifungals specifically to the fungal pathogen. Using two mouse models of pulmonary aspergillosis, we demonstrate that Dectin-2-targeted delivery of amphotericin B to A. fumigatus resulted in remarkably higher efficacy than that of the untargeted antifungal formulations.


2017 ◽  
Vol 182 (7-8) ◽  
pp. 709-713 ◽  
Author(s):  
Cendrine Godet ◽  
Estelle Cateau ◽  
Blandine Rammaert ◽  
Marine Grosset ◽  
Gwenaël Le Moal ◽  
...  

2018 ◽  
Vol 60 (1) ◽  
pp. 42-45
Author(s):  
Tuan Quang Nguyen ◽  
Van Lam Nguyen ◽  
Thai Son Nguyen ◽  
Thi Minh Hue Pham ◽  
◽  
...  

2002 ◽  
Vol 46 (8) ◽  
pp. 2420-2426 ◽  
Author(s):  
Karl V. Clemons ◽  
Raymond A. Sobel ◽  
Paul L. Williams ◽  
Demosthenes Pappagianis ◽  
David A. Stevens

ABSTRACT The efficacy of intravenously administered liposomal amphotericin B (AmBisome [AmBi]) for the treatment of experimental coccidioidal meningitis was compared with those of oral fluconazole (FLC) and intravenously administered conventional amphotericin B (AMB). Male New Zealand White rabbits were infected by intracisternal inoculation of arthroconidia of Coccidioides immitis. Starting 5 days postinfection, animals received one of the following: 5% dextrose water diluent; AMB given at 1 mg/kg of body weight; AmBi given at 7.5, 15, or 22.5 mg/kg intravenously three times per week for 3 weeks; or oral FLC given at 80 mg/kg for 19 days. One week after the cessation of therapy, all survivors were euthanatized, the numbers of CFU remaining in the spinal cord and brain were determined, and histological analyses were performed. All AmBi-, FLC-, or AMB-treated animals survived and had prolonged lengths of survival compared with those for the controls (P < 0.0001). Treated groups had significantly lower numbers of white blood cells and significantly lower protein concentrations in the cerebrospinal fluid compared with those for the controls (P < 0.01 to 0.0005) and had fewer clinical signs of infection (e.g., weight loss, elevated temperature, and neurological abnormalities including motor abnormalities). The mean histological scores for AmBi-treated rabbits were lower than those for FLC-treated and control rabbits (P < 0.016 and 0.0005, respectively); the scores for AMB-treated animals were lower than those for the controls (P < 0.0005) but were similar to those for FLC-treated rabbits. All regimens reduced the numbers of CFU in the brain and spinal cord compared with those for the controls (P ≤0.0005). AmBi-treated animals had 3- to 11-fold lower numbers of CFU than FLC-treated rabbits and 6- to 35-fold lower numbers of CFU than AmB-treated rabbits. Three of eight animals given 15 mg of AmBi per kg had no detectable infection in either tissue, whereas other doses of AmBi or FLC cleared either the brain or the spinal cord of infection in fewer rabbits. In addition, clearance of the infection from both tissues was achieved in none of the rabbits, and neither tissue was cleared of infection in AMB-treated animals. Overall, these data indicate that intravenously administered AmBi is superior to oral FLC or intravenous AMB and that FLC is better than AMB against experimental coccidioidal meningitis. These data indicate that AmBi may offer an improvement in the treatment of coccidioidal meningitis. Additional studies are warranted.


2015 ◽  
Vol 41 (5) ◽  
pp. 948-949 ◽  
Author(s):  
Quentin Ressaire ◽  
Christophe Padoin ◽  
Marc Chaouat ◽  
Veronique Maurel ◽  
Alexandre Alanio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document