Continuous-Valued Cellular Automata in Two Dimensions

Author(s):  
Rudy Rucker

We explore a variety of two-dimensional continuous-valued cellular automata (CAs). We discuss how to derive CA schemes from differential equations and look at CAs based on several kinds of nonlinear wave equations. In addition we cast some of Hans Meinhardt’s activator-inhibitor reaction-diffusion rules into two dimensions. Some illustrative runs of CAPOW, a. CA simulator, are presented. A cellular automaton, or CA, is a computation made up of finite elements called cells. Each cell contains the same type of state. The cells are updated in parallel, using a rule which is homogeneous, and local. In slightly different words, a CA is a computation based upon a grid of cells, with each cell containing an object called a state. The states are updated in discrete steps, with all the cells being effectively updated at the same time. Each cell uses the same algorithm for its update rule. The update algorithm computes a cell’s new state by using information about the states of the cell’s nearby space-time neighbors, that is, using the state of the cell itself, using the states of the cell’s nearby neighbors, and using the recent prior states of the cell and its neighbors. The states do not necessarily need to be single numbers, they can also be data structures built up from numbers. A CA is said to be discrete valued if its states are built from integers, and a CA is continuous valued if its states are built from real numbers. As Norman Margolus and Tommaso Toffoli have pointed out, CAs are well suited for modeling nature [7]. The parallelism of the CA update process mirrors the uniform flow of time. The homogeneity of the CA update rule across all the cells corresponds to the universality of natural law. And the locality of CAs reflect the fact that nature seems to forbid action at a distance. The use of finite space-time elements for CAs are a necessary evil so that we can compute at all. But one might argue that the use of discrete states is an unnecessary evil.

2015 ◽  
Vol 12 (02) ◽  
pp. 249-276
Author(s):  
Tomonari Watanabe

We study the global existence and the derivation of decay estimates for nonlinear wave equations with a space-time dependent dissipative term posed in an exterior domain. The linear dissipative effect may vanish in a compact space region and, moreover, the nonlinear terms need not be in a divergence form. In order to establish higher-order energy estimates, we introduce an argument based on a suitable rescaling. The proposed method is useful to control certain derivatives of the dissipation coefficient.


2006 ◽  
Vol 03 (01) ◽  
pp. 81-141 ◽  
Author(s):  
PIOTR T. CHRUŚCIEL ◽  
SZYMON ŁȨSKI

The study of Einstein equations leads naturally to Cauchy problems with initial data on hypersurfaces which closely resemble hyperboloids in Minkowski space-time, and with initial data with polyhomogeneous asymptotics, that is, with asymptotic expansions in terms of powers of ln r and inverse powers of r. Such expansions also arise in the conformal method for analysing wave equations in odd space-time dimension. In recent work it has been shown that for non-linear wave equations, or for wave maps, polyhomogeneous initial data lead to solutions which are also polyhomogeneous provided that an infinite hierarchy of corner conditions holds. In this paper we show that the result is true regardless of corner conditions.


2013 ◽  
Vol 54 (3) ◽  
pp. 153-170 ◽  
Author(s):  
RUNZHANG XU ◽  
YANBING YANG ◽  
SHAOHUA CHEN ◽  
JIA SU ◽  
JIHONG SHEN ◽  
...  

AbstractThis paper is concerned with the initial boundary value problem of a class of nonlinear wave equations and reaction–diffusion equations with several nonlinear source terms of different signs. For the initial boundary value problem of the nonlinear wave equations, we derive a blow up result for certain initial data with arbitrary positive initial energy. For the initial boundary value problem of the nonlinear reaction–diffusion equations, we discuss some probabilities of the existence and nonexistence of global solutions and give some sufficient conditions for the global and nonglobal existence of solutions at high initial energy level by employing the comparison principle and variational methods.


2021 ◽  
Vol 3 (1) ◽  
pp. 11-20
Author(s):  
Kyrill I. Vaninsky

We consider space-time properties of periodic solutions of nonlinear wave equations, nonlinear Schrödinger equations and KdV-type equations with initial data from the support of the Gibbs’ measure. For the wave and Schrödinger equations we establish the best Hölder exponents. We also discuss KdV-type equations which are more difficult due to a presence of the derivative in the nonlinearity.


2007 ◽  
Vol 17 (11) ◽  
pp. 4049-4065 ◽  
Author(s):  
JIBIN LI ◽  
GUANRONG CHEN

The existence of solitary wave, kink wave and periodic wave solutions of a class of singular reaction–diffusion equations is obtained using some effective methods from the dynamical systems theory. Specially, for a class of nonlinear wave equations, fundamental properties of profiles of traveling wave solutions determined by some bounded orbits of the traveling wave systems are rigorously proved. Parametric conditions that guarantee the existence of the aforementioned solutions are derived and given explicitly.


Sign in / Sign up

Export Citation Format

Share Document