scholarly journals Wearables

2021 ◽  
pp. 229-234
Author(s):  
Eric D. Perakslis ◽  
Martin Stanley

Health wearables are one of the more established elements of the digital health revolution. GPS-enabled watches have been successful training aids for amateur and professional athletes for well over a decade. The ability to miniaturize complex biosensors to enable remote vital signs monitoring, disease progression and treatment effect measurement are all very real opportunities worthy of the hype. Early versions of these tools, however, were not Internet-connected and were not capable of being tethered to a cellular and or Internet-enabled mobile phone. In order for these devices to reach their potential for patients, understanding their risks within the context of the entire connected ecosystem must occur.

Author(s):  
Osman Yakubu ◽  
Emmanuel Wireko

The advent of the internet of things (IoT) has resulted in an upsurge in the deployment of digital health care systems enabling patients’ health conditions to be remotely monitored. This article presents an intelligent and automated IoT-based vital signs monitoring system to aid in patient care. A the oretical framework was established to guide the development of a prototype. It encompasses the patient, IoT sensors, input and storage unit and data processing, analysis and data transmission. The prototype is equipped with the capability of sensing a patient’s body temperature, heart rate, and respiration rate in real time and transmits the data to a cloud data repository for storage and analysis. Alerts are sent to caregivers using SMS, email and voice calls where urgent attention is required for the patient. The voice call isto ensure a caregiver does not miss the alert since SMS and email may not be checked on time. To ensure privacy of patients, a caregiver has to be biometrically verified by either fingerprint or facial pattern. The experimental results confirmed the accuracy of the data gathered by the prototype, privacy of patients is also guaranteed compared to other benchmark systems.


Author(s):  
Wenxi Chen ◽  
Daming Wei ◽  
Shuxue Ding ◽  
Michael Cohen ◽  
Hui Wang ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andrew W. Kirkpatrick ◽  
Jessica L. McKee ◽  
John M. Conly

AbstractCOVID-19 has impacted human life globally and threatens to overwhelm health-care resources. Infection rates are rapidly rising almost everywhere, and new approaches are required to both prevent transmission, but to also monitor and rescue infected and at-risk patients from severe complications. Point-of-care lung ultrasound has received intense attention as a cost-effective technology that can aid early diagnosis, triage, and longitudinal follow-up of lung health. Detecting pleural abnormalities in previously healthy lungs reveal the beginning of lung inflammation eventually requiring mechanical ventilation with sensitivities superior to chest radiographs or oxygen saturation monitoring. Using a paradigm first developed for space-medicine known as Remotely Telementored Self-Performed Ultrasound (RTSPUS), motivated patients with portable smartphone support ultrasound probes can be guided completely remotely by a remote lung imaging expert to longitudinally follow the health of their own lungs. Ultrasound probes can be couriered or even delivered by drone and can be easily sterilized or dedicated to one or a commonly exposed cohort of individuals. Using medical outreach supported by remote vital signs monitoring and lung ultrasound health surveillance would allow clinicians to follow and virtually lay hands upon many at-risk paucisymptomatic patients. Our initial experiences with such patients are presented, and we believe present a paradigm for an evolution in rich home-monitoring of the many patients expected to become infected and who threaten to overwhelm resources if they must all be assessed in person by at-risk care providers.


2021 ◽  
Vol 20 (2) ◽  
pp. 58-62
Author(s):  
Melanie Baldinger ◽  
Axel Heinrich ◽  
Tim Adams ◽  
Eimo Martens ◽  
Michael Dommasch ◽  
...  

2021 ◽  
pp. 004051752110362
Author(s):  
Ka-Po Lee ◽  
Joanne Yip ◽  
Kit-Lun Yick ◽  
Chao Lu ◽  
Chris K Lo

Receptivity towards textile-based fiber optic sensors that are used to monitor physical health is increasing as they have good flexibility, are light in weight, provide wear comfort, have electromagnetic immunity, and are electrically safe. Their superior performance has facilitated their use for obtaining close to body measurements. However, there are many related studies in the literature, so it is challenging to identify the knowledge structure and research trends. Therefore, this article aims to provide an objective and systematic literature review on textile-based fiber optic sensors that are used for monitoring health issues and to analyze their trends through a citation network analysis. A full-text search of journal articles was conducted in the Web of Science Core Collection, and a total of 625 studies was found, with 47 that were used as the sample. Also, CitNetExplorer was used for analyzing the research domains and trends. Three research domains were identified, among them, “Flexible sensors for vital signs monitoring” is the largest research cluster, and most of the articles in this cluster focus on respiratory monitoring. Therefore, this area of study should probably be on the academic radar. The collection of data on textile-based fiber optic sensors is invaluable for evaluating degree of rehabilitation, detecting diseases, preventing accidents, as well as gauging the performance and training successfulness of athletes.


2021 ◽  
pp. 1-7
Author(s):  
Diane Stephenson ◽  
Reham Badawy ◽  
Soania Mathur ◽  
Maria Tome ◽  
Lynn Rochester

The burden of Parkinson’s disease (PD) continues to grow at an unsustainable pace particularly given that it now represents the fastest growing brain disease. Despite seminal discoveries in genetics and pathogenesis, people living with PD oftentimes wait years to obtain an accurate diagnosis and have no way to know their own prognostic fate once they do learn they have the disease. Currently, there is no objective biomarker to measure the onset, progression, and severity of PD along the disease continuum. Without such tools, the effectiveness of any given treatment, experimental or conventional cannot be measured. Such tools are urgently needed now more than ever given the rich number of new candidate therapies in the pipeline. Over the last decade, millions of dollars have been directed to identify biomarkers to inform progression of PD typically using molecular, fluid or imaging modalities). These efforts have produced novel insights in our understanding of PD including mechanistic targets, disease subtypes and imaging biomarkers. While we have learned a lot along the way, implementation of robust disease progression biomarkers as tools for quantifying changes in disease status or severity remains elusive. Biomarkers have improved health outcomes and led to accelerated drug approvals in key areas of unmet need such as oncology. Quantitative biomarker measures such as HbA1c a standard test for the monitoring of diabetes has impacted patient care and management, both for the healthcare professionals and the patient community. Such advances accelerate opportunities for early intervention including prevention of disease in high-risk individuals. In PD, progression markers are needed at all stages of the disease in order to catalyze drug development—this allows interventions aimed to halt or slow disease progression, very early, but also facilitates symptomatic treatments at moderate stages of the disease. Recently, attention has turned to the role of digital health technologies to complement the traditional modalities as they are relatively low cost, objective and scalable. Success in this endeavor would be transformative for clinical research and therapeutic development. Consequently, significant investment has led to a number of collaborative efforts to identify and validate suitable digital biomarkers of disease progression.


2014 ◽  
Vol 80 (3) ◽  
pp. 218
Author(s):  
N. Lo ◽  
A. Navlekar ◽  
E. Palmgren ◽  
R. Rekhi ◽  
F. Ussher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document