Nonlinear dynamics and chaos

Author(s):  
Joseph F. Boudreau ◽  
Eric S. Swanson

Simple maps and dynamical systems are used to explore chaos in nature. The discussion starts with a review of the properties of nonlinear ordinary differential equations, including the useful concepts of phase portraits, fixed points, and limit cycles. These notions are developed further in an examination of iterative maps that reveal chaotic behavior. Next, the damped driven oscillator is used to illustrate the Lyapunov exponent that can be used to quantify chaos. The famous KAM theorem on the conditions under which chaotic behavior occurs in physical systems is also presented. The principle is illustrated with the Hénon-Heiles model of a star in a galactic environment and billiard models that describe the motion of balls in closed two-dimensional regions.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shun-Chang Chang

This study employed a variety of nonlinear dynamic analysis techniques to explore the complex phenomena associated with a nonlinear mathematical model of an active magnetic bearing (AMB) system. The aim was to develop a method with which to assume control over chaotic behavior. The bifurcation diagram comprehensively explicates rich nonlinear dynamics over a range of parameter values. In this study, we examined the complex nonlinear behaviors of AMB systems using phase portraits, Poincaré maps, and frequency spectra. Furthermore, estimates of the largest Lyapunov exponent based on the properties of synchronization confirmed the occurrence of chatter vibration indicative of chaotic motion. Thus, the proposed continuous feedback control approach based on synchronization characteristics eliminates chaotic oscillations. Finally, some simulation results demonstrated the feasibility and efficiency of the proposed control scheme.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1445
Author(s):  
Cheng-Chi Wang ◽  
Yong-Quan Zhu

In this study, the subject of investigation was the dynamic double pendulum crank mechanism used in a robotic arm. The arm is driven by a DC motor though the crank system and connected to a fixed side with a mount that includes a single spring and damping. Robotic arms are now widely used in industry, and the requirements for accuracy are stringent. There are many factors that can cause the induction of nonlinear or asymmetric behavior and even excite chaotic motion. In this study, bifurcation diagrams were used to analyze the dynamic response, including stable symmetric orbits and periodic and chaotic motions of the system under different damping and stiffness parameters. Behavior under different parameters was analyzed and verified by phase portraits, the maximum Lyapunov exponent, and Poincaré mapping. Firstly, to distinguish instability in the system, phase portraits and Poincaré maps were used for the identification of individual images, and the maximum Lyapunov exponents were used for prediction. GoogLeNet and ResNet-50 were used for image identification, and the results were compared using a convolutional neural network (CNN). This widens the convolutional layer and expands pooling to reduce network training time and thickening of the image; this deepens the network and strengthens performance. Secondly, the maximum Lyapunov exponent was used as the key index for the indication of chaos. Gaussian process regression (GPR) and the back propagation neural network (BPNN) were used with different amounts of data to quickly predict the maximum Lyapunov exponent under different parameters. The main finding of this study was that chaotic behavior occurs in the robotic arm system and can be more efficiently identified by ResNet-50 than by GoogLeNet; this was especially true for Poincaré map diagnosis. The results of GPR and BPNN model training on the three types of data show that GPR had a smaller error value, and the GPR-21 × 21 model was similar to the BPNN-51 × 51 model in terms of error and determination coefficient, showing that GPR prediction was better than that of BPNN. The results of this study allow the formation of a highly accurate prediction and identification model system for nonlinear and chaotic motion in robotic arms.


1996 ◽  
Vol 118 (3) ◽  
pp. 375-383 ◽  
Author(s):  
R. S. Chancellor ◽  
R. M. Alexander ◽  
S. T. Noah

A method of detecting parameter changes using analytical and experimental nonlinear dynamics and chaos is applied to a piecewise-linear oscillator. Experimental data show the chaotic nature of the system through phase portraits, Poincare´ maps, frequency spectra and bifurcation diagrams. Unstable periodic orbits were extracted from each chaotic time series obtained from the system with six different parameter values. Movement of the unstable periodic orbits in phase space is used to detect parameter changes in the system.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
André Brandão ◽  
Aline Souza de Paula ◽  
Marcelo Amorim Savi ◽  
Fabrice Thouverez

Rotor systems have wide applications in industries, including aero engines, turbo generators, and gas turbines. Critical behaviors promoted by the system unbalance and the contact between rotor and stator lead to important nonlinearities on system dynamics. This paper investigates the complex behavior presented by a rotor-stator system’s dynamics due to intermittent contact. A four-degree-of-freedom Jeffcott nonsmooth rotor/stator system is used to describe the rotor behavior, while a viscoelastic suspended rigid cylinder represents the stator. Numerical simulations are carried out showing rich dynamics that include periodic, quasiperiodic, and chaotic responses. Special attention is dedicated to chaotic behavior and the calculation of Lyapunov exponents is employed as a diagnostic tool.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shun-Chang Chang

A nonlinear mathematical model of a magnetic bearing system has been obtained by applying a modified conventional identification technique based on the principle of harmonic balance. In this study, we examined the rich nonlinear dynamics of a magnetic bearing system with closed-loop control using phase portraits, Poincaré maps, and frequency spectra. The resulting bifurcation diagram can be used to evaluate the operational range of systems employing nonlinear actuators. Estimates of the largest Lyapunov exponent based on the properties of synchronization revealed the occurrence of chatter vibration indicative of chaotic motion. Various control methods, such as the state feedback control and the injection of dither signals, were then used to quench the chaotic behavior.


Author(s):  
David D. Nolte

The geometric structure of state space is understood through phase portraits and stability analysis that classify the character of fixed points based on the properties of Lyapunov exponents. Limit cycles are an important type of periodic orbit that occurs in many nonlinear systems, and their stability is analyzed according to Floquet multipliers. When time dependence is added to an autonomous two-dimensional state space system to make it non-autonomous, then chaos can emerge, as in the case of the driven damped pendulum. Autonomous systems with three-dimensional chaos include the Lorenz and Rössler models. Dissipative chaos often displays strange attractors with fractal dimensions.


Author(s):  
Athina Bougioukou

The intention of this research is to investigate the aspect of non-linearity and chaotic behavior of the Cyprus stock market. For this purpose, we use non-linearity and chaos theory. We perform BDS, Hinich-Bispectral tests and compute Lyapunov exponent of the Cyprus General index. The results show that existence of non-linear dependence and chaotic features as the maximum Lyapunov exponent was found to be positive. This study is important because chaos and efficient market hypothesis are mutually exclusive aspects. The efficient market hypothesis which requires returns to be independent and identically distributed (i.i.d.) cannot be accepted.


Sign in / Sign up

Export Citation Format

Share Document