The physical-chemical environment of microbes

Author(s):  
David L. Kirchman

Many physical-chemical properties affecting microbes are familiar to ecologists examining large organisms in our visible world. This chapter starts by reviewing the basics of these properties, such as the importance of water for microbes in soils and temperature in all environments. Another important property, pH, has direct effects on organisms and indirect effects via how hydrogen ions determine the chemical form of key molecules and compounds in nature. Oxygen content is also critical, as it is essential to the survival of all but a few eukaryotes. Light is used as an energy source by phototrophs, but it can have deleterious effects on microbes. In addition to these familiar factors, the small size of microbes sets limits on their physical world. Microbes are said to live in a “low Reynolds number environment”. When the Reynolds number is smaller than about one, viscous forces dominate over inertial forces. For a macroscopic organism like us, moving in a low Reynolds number environment would seem like swimming in molasses. Microbes in both aquatic and terrestrial habitats live in a low Reynolds number world, one of many similarities between the two environments at the microbial scale. Most notably, even soil microbes live in an aqueous world, albeit a thin film of water on soil particles. But the soil environment is much more heterogeneous than water, with profound consequences for biogeochemical processes and interactions among microbes. The chapter ends with a discussion of how the physical-chemical environment of microbes in biofilms is quite different from that of free-living organisms.

2019 ◽  
Vol 69 (1) ◽  
pp. 69-84
Author(s):  
Veldurthi Naresh ◽  
D. Bodas ◽  
Chandel Sunil ◽  
Bhave Tejashree

AbstractIn the present work, two geometrically similar passive geometries with dumbbell shape were designed to perturb the dominating viscous forces in the low Reynolds number (Re) flows of the fluids. The geometries were designated as PDM-I and PDM-II, in which all the linear dimensions were related by a constant scale factor of two. Mixing efficiencies and pressure drops of the species at various Reynolds number (Re) were calculated to estimate the scaling effect validations. Finally, the geometrically similar PDM geometries were fabricated in Polydimethylsiloxane (PDMS) polymer to evaluate the scaling effect on the mixing efficiencies of the dyes and validated with the simulation results of species mixing.


2015 ◽  
Vol 12 (112) ◽  
pp. 20150776 ◽  
Author(s):  
Petra H. Lenz ◽  
Daisuke Takagi ◽  
Daniel K. Hartline

Small metazoan paddlers, such as crustacean larvae (nauplii), are abundant, ecologically important and active swimmers, which depend on exploiting viscous forces for locomotion. The physics of micropaddling at low Reynolds number was investigated using a model of swimming based on slender-body theory for Stokes flow. Locomotion of nauplii of the copepod Bestiolina similis was quantified from high-speed video images to obtain precise measurements of appendage movements and the resulting displacement of the body. The kinematic and morphological data served as inputs to the model, which predicted the displacement in good agreement with observations. The results of interest did not depend sensitively on the parameters within the error of measurement. Model tests revealed that the commonly attributed mechanism of ‘feathering’ appendages during return strokes accounts for only part of the displacement. As important for effective paddling at low Reynolds number is the ability to generate a metachronal sequence of power strokes in combination with synchronous return strokes of appendages. The effect of feathering together with a synchronous return stroke is greater than the sum of each factor individually. The model serves as a foundation for future exploration of micropaddlers swimming at intermediate Reynolds number where both viscous and inertial forces are important.


2018 ◽  
Vol 12 (3) ◽  
pp. 255
Author(s):  
Muhammad Zal Aminullah Daman Huri ◽  
Shabudin Bin Mat ◽  
Mazuriah Said ◽  
Shuhaimi Mansor ◽  
Md. Nizam Dahalan ◽  
...  

Author(s):  
Vadim V. Lemanov ◽  
Viktor I. Terekhov ◽  
Vladimir V. Terekhov

Sign in / Sign up

Export Citation Format

Share Document