Spectral Methods

Author(s):  
S. G. Rajeev

Thenumerical solution of ordinary differential equations (ODEs)with boundary conditions is studied here. Functions are approximated by polynomials in a Chebychev basis. Sections then cover spectral discretization, sampling, interpolation, differentiation, integration, and the basic ODE. Following Trefethen et al., differential operators are approximated as rectangular matrices. Boundary conditions add additional rows that turn them into square matrices. These can then be diagonalized using standard linear algebra methods. After studying various simple model problems, this method is applied to the Orr–Sommerfeld equation, deriving results originally due to Orszag. The difficulties of pushing spectral methods to higher dimensions are outlined.

2021 ◽  
Vol 13 ◽  
Author(s):  
Todor D. Todorov

  We discuss linear algebra of infinite-dimensional vector spaces in terms of algebraic (Hamel) bases. As an application we prove the surjectivity of a large class of linear partial differential operators with smooth ($\mathcal C^\infty$-coefficients) coefficients, called in the article \emph{regular}, acting on the algebraic dual $\mathcal D^*(\Omega)$ of the space of test-functions $\mathcal D(\Omega)$. The surjectivity of the partial differential operators guarantees solvability of the corresponding partial differential equations within $\mathcal D^*(\Omega)$. We discuss our result in contrast to and comparison with similar results about the restrictions of the regular operators on the space of Schwartz distribution $\mathcal D^\prime(\Omega)$, where these operators are often non-surjective. 


Author(s):  
Marcin Jaraczewski ◽  
Tadeusz Sobczyk

Purpose Discrete differential operators of periodic base functions have been examined to solve boundary-value problems. This paper aims to identify the difficulties of using those operators to solve ordinary linear and nonlinear differential equations with Dirichlet and Neumann boundary conditions. Design/methodology/approach This paper presents a promising approach for solving two-dimensional (2D) boundary problems of elliptic differential equations. To create finite differential equations, specially developed discrete partial differential operators are used to replace the partial derivatives in the differential equations. These operators relate the value of the partial derivatives at each point to the value of the function at all points evenly distributed over the area where the solution is being sought. Exemplary 2D elliptic equations are solved for two types of boundary conditions: the Dirichlet and the Neumann. Findings An alternative method has been proposed to create finite-difference equations and an effective method to determine the leakage flux in the transformer window. Research limitations/implications The proposed approach can be classified as an extension of the finite-difference method based on the new formulas approximating the derivatives. This method can be extended to the 3D or time-periodic 2D cases. Practical implications This paper presents a methodology for calculations of the self- and mutual-leakage inductances for windings arbitrarily located in the transformer window, which is needed for special transformers or in any case of the internal asymmetry of windings. Originality/value The presented methodology allows us to obtain the magnetic vector potential distribution in the transformer window only, for example, to omit the magnetic core of the transformer from calculations.


2017 ◽  
Vol 9 (2) ◽  
pp. 146
Author(s):  
Simon Davis

Boundary value problems are formulated on infinite-genus surfaces. These are solved for a variety of boundary conditions. The symbol calculus for differential operators is developed further for solution of parabolic differential equations at infinite genus.


2009 ◽  
Vol 2009 ◽  
pp. 1-21 ◽  
Author(s):  
O. A. Veliev

We obtain asymptotic formulas for eigenvalues and eigenfunctions of the operator generated by a system of ordinary differential equations with summable coefficients and quasiperiodic boundary conditions. Then by using these asymptotic formulas, we find conditions on the coefficients for which the number of gaps in the spectrum of the self-adjoint differential operator with the periodic matrix coefficients is finite.


2013 ◽  
Vol 7 (2) ◽  
pp. 378-389 ◽  
Author(s):  
Manfred Möller ◽  
Bertin Zinsou

We consider eigenvalue problems for sixth-order ordinary differential equations. Such differential equations occur in mathematical models of vibrations of curved arches. With suitably chosen eigenvalue dependent boundary conditions, the problem is realized by a quadratic operator pencil. It is shown that the operators in this pencil are self-adjoint, and that the spectrum of the pencil consists of eigenvalues of finite multiplicity in the closed upper half-plane, except for finitely many eigenvalues on the negative imaginary axis.


Author(s):  
Stjepan Meljanac ◽  
◽  
Rina Štrajn ◽  
◽  
◽  
...  

We consider a class of exponentials in the Weyl-Heisenberg algebra with exponents of type at most linear in coordinates and arbitrary functions of momenta. They are expressed in terms of normal ordering where coordinates stand to the left from momenta. Exponents appearing in normal ordered form satisfy differential equations with boundary conditions that could be solved perturbatively order by order. Two propositions are presented for the Weyl-Heisenberg algebra in 2 dimensions and their generalizations in higher dimensions. These results can be applied to arbitrary noncommutative spaces for construction of star products, coproducts of momenta and twist operators. They can also be related to the BCH formula.


2020 ◽  
Vol 28 (5) ◽  
pp. 727-738
Author(s):  
Victor Sadovnichii ◽  
Yaudat Talgatovich Sultanaev ◽  
Azamat Akhtyamov

AbstractWe consider a new class of inverse problems on the recovery of the coefficients of differential equations from a finite set of eigenvalues of a boundary value problem with unseparated boundary conditions. A finite number of eigenvalues is possible only for problems in which the roots of the characteristic equation are multiple. The article describes solutions to such a problem for equations of the second, third, and fourth orders on a graph with three, four, and five edges. The inverse problem with an arbitrary number of edges is solved similarly.


2021 ◽  
Vol 19 (1) ◽  
pp. 760-772
Author(s):  
Ahmed Alsaedi ◽  
Bashir Ahmad ◽  
Badrah Alghamdi ◽  
Sotiris K. Ntouyas

Abstract We study a nonlinear system of Riemann-Liouville fractional differential equations equipped with nonseparated semi-coupled integro-multipoint boundary conditions. We make use of the tools of the fixed-point theory to obtain the desired results, which are well-supported with numerical examples.


Sign in / Sign up

Export Citation Format

Share Document