scholarly journals On the Differential Operators with Periodic Matrix Coefficients

2009 ◽  
Vol 2009 ◽  
pp. 1-21 ◽  
Author(s):  
O. A. Veliev

We obtain asymptotic formulas for eigenvalues and eigenfunctions of the operator generated by a system of ordinary differential equations with summable coefficients and quasiperiodic boundary conditions. Then by using these asymptotic formulas, we find conditions on the coefficients for which the number of gaps in the spectrum of the self-adjoint differential operator with the periodic matrix coefficients is finite.

2007 ◽  
Vol 44 (3) ◽  
pp. 391-409 ◽  
Author(s):  
Melda Duman ◽  
Alp Kiraç ◽  
Oktay Veliev

We obtain asymptotic formulas with arbitrary order of accuracy for the eigenvalues and eigenfunctions of a nonselfadjoint ordinary differential operator of order n whose coefficients are Lebesgue integrable on [0, 1] and the boundary conditions are strongly regular. The orders of asymptotic formulas are independent of smoothness of the coefficients.


1988 ◽  
Vol 31 (4) ◽  
pp. 432-438
Author(s):  
Allan M. Krall

AbstractThe self-adjoint extensions of the singular differential operator Ly = [(py’)’ + qy]/w, where p < 0, w > 0, q ≧ mw, are characterized under limit-circle conditions. It is shown that as long as the coefficients of certain boundary conditions define points which lie between two lines, the extension they help define has the same lower bound.


1992 ◽  
Vol 128 ◽  
pp. 15-47 ◽  
Author(s):  
Masatake Miyake ◽  
Yoshiaki Hashimoto

This paper is a continuation of Miyake [7] by the first named author. We shall study the unique solvability of an integro-differential equation in the category of formal or convergent power series with Gevrey estimate for the coefficients, and our results give some analogue in partial differential equations to Ramis [10, 11] in ordinary differential equations.In the study of analytic ordinary differential equations, the notion of irregularity was first introduced by Malgrange [3] as a difference of indices of a differential operator in the categories of formal power series and convergent power series. After that, Ramis extended his theory to the category of formal or convergent power series with Gevrey estimate for the coefficients. In these studies, Ramis revealed a significant meaning of a Newton polygon associated with a differential operator.


Author(s):  
S. G. Rajeev

Thenumerical solution of ordinary differential equations (ODEs)with boundary conditions is studied here. Functions are approximated by polynomials in a Chebychev basis. Sections then cover spectral discretization, sampling, interpolation, differentiation, integration, and the basic ODE. Following Trefethen et al., differential operators are approximated as rectangular matrices. Boundary conditions add additional rows that turn them into square matrices. These can then be diagonalized using standard linear algebra methods. After studying various simple model problems, this method is applied to the Orr–Sommerfeld equation, deriving results originally due to Orszag. The difficulties of pushing spectral methods to higher dimensions are outlined.


2002 ◽  
Vol 9 (2) ◽  
pp. 287-294
Author(s):  
Tadeusz Jankowski

Abstract The method of lower and upper solutions combined with the monotone iterative technique is used for ordinary differential equations with nonlinear boundary conditions. Some existence results are formulated for such problems.


2020 ◽  
Vol 26 (2) ◽  
pp. 297-307
Author(s):  
Petro I. Kalenyuk ◽  
Yaroslav O. Baranetskij ◽  
Lubov I. Kolyasa

AbstractWe study a nonlocal problem for ordinary differential equations of {2n}-order with involution. Spectral properties of the operator of this problem are analyzed and conditions for the existence and uniqueness of its solution are established. It is also proved that the system of eigenfunctions of the analyzed problem forms a Riesz basis.


2021 ◽  
Vol 11 (11) ◽  
pp. 4798
Author(s):  
Hari Mohan Srivastava ◽  
Sotiris K. Ntouyas ◽  
Mona Alsulami ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

The main object of this paper is to investigate the existence of solutions for a self-adjoint coupled system of nonlinear second-order ordinary differential equations equipped with nonlocal multi-point coupled boundary conditions on an arbitrary domain. We apply the Leray–Schauder alternative, the Schauder fixed point theorem and the Banach contraction mapping principle in order to derive the main results, which are then well-illustrated with the aid of several examples. Some potential directions for related further researches are also indicated.


Sign in / Sign up

Export Citation Format

Share Document