Mixing, Mass Transfer, and Numerical Models

2021 ◽  
pp. 182-239
Author(s):  
Thorvald Abel Engh ◽  
Geoffrey K. Sigworth ◽  
Anne Kvithyld

We want to eliminate dissolved impurities to another phase: slag, gas, solid, or a molten metal that has limited solubility in the main metal. The various phases may be in the form of droplets, bubbles, particles, or walls. The contact areas with metal should be large. The aim in reactor design and operation is to achieve relatively high velocities and small dimensions. Relations for mass transfer are also included since the behaviour of systems with molten metals may be different from that usually treated in chemical engineering. In the field of turbulence the Prandtl eddy length is important for describing removal to walls. Hydrogen in aluminium and the pick-up of hydrogen in aluminium from water vapour is studied in some detail, measured, and modelled. It is taken into account that hydrogen gas is two-atomic. The approach concerning aluminium may be applied to a range of metals.

2021 ◽  
pp. 240-302
Author(s):  
Thorvald Abel Engh ◽  
Geoffrey K. Sigworth ◽  
Anne Kvithyld

Impurities are transferred out at the boundary of the liquid. Velocities normal to the boundary are small. Therefore, for efficient removal contact areas and times should be large. Transfer depends on the chemical and physical properties of the liquid and the phase that captures the impurities at the boundary. This phase may be a liquid, gas (vacuum) or solid. Properties can be described in terms of equilibrium and empirical mass transfer coefficients. Vacuum may be applied to remove volatile elements. Refining can be carried out by partial solidification or fractional crystallisation, using the segregation that occurs during freezing of an alloy. Finally, an element can be added to form a reactive compound followed by removal of the compound by sedimentation or filtration.


2019 ◽  
Vol 13 (4) ◽  
pp. 112-117 ◽  
Author(s):  
V.Sh. Shagapov ◽  
M.N. Zapivakhina

The numerical models for the injection of warm water (in the temperature range from 300 to 340 K) into a cold porous formation are considered. Simplified models describing the processes of heat and mass transfer are proposed. The influence of the parameters determining the initial state of the porous medium, the boundary pressure, temperature and moisture content on the rate of propagation of hydrodynamic and temperature fields in the porous medium is investigated. It has been established that it is economically feasible to melt frozen soils saturated with ice and gas (air) at a sufficiently low temperature of the injected water (about 300 K).


1988 ◽  
Vol 53 (6) ◽  
pp. 1181-1197
Author(s):  
Vladimír Kudrna

The paper presents alternative forms of partial differential equations of the parabolic type used in chemical engineering for description of heat and mass transfer. It points at the substantial difference between the classic form of the equations, following from the differential balances of mass and enthalpy, and the form following from the concept of stochastic motion of particles of mass or energy component. Examples are presented of the processes that may be described by the latter method. The paper also reviews the cases when the two approaches become identical.


1965 ◽  
Vol 5 (01) ◽  
pp. 15-24 ◽  
Author(s):  
Norman R. Morrow ◽  
Colin C. Harris

Abstract The experimental points which describe capillary pressure curves are determined at apparent equilibria which are observed after hydrodynamic flow has ceased. For most systems, the time required to obtain equalization of pressure throughout the discontinuous part of a phase is prohibitive. To permit experimental points to be described as equilibria, a model of capillary behavior is proposed where mass transfer is restricted to bulk fluid flow. Model capillary pressure curves follow if the path described by such points is independent of the rate at which the saturation was changed to attain a capillary pressure point. A modified suction potential technique is used to study cyclic relationships between capillary pressure and moisture content for a porous mass. The time taken to complete an experiment was greatly reduced by using small samples. Introduction Capillary retention of liquid by porous materials has been investigated in the fields of hydrology, soil science, oil reservoir engineering, chemical engineering, soil mechanics, textiles, paper making and building materials. In studies of the immiscible displacement of one fluid by another within a porous bed, drainage columns and suction potential techniques have been used to obtain relationships between pressure deficiency and saturation (Fig. 1). Except where there is no hysteresis of contact angle and the solid is of simple geometry, such as a tube of uniform cross section, there is hysteresis in the relationship between capillary pressure and saturation. The relationship which has received most attention is displacement of fluid from an initially saturated bed (Fig. 1, Curve Ro), the final condition being an irreducible minimum fluid saturation Swr. Imbibition (Fig. 1, Curve A), further desaturation (Fig. 1, Curve R), and intermediate scanning curves have been studied to a lesser but increasing extent. This paper first considers the nature of the experimental points tracing the capillary pressure curves with respect to the modes and rates of mass transfer which are operative during the course of measurement. There are clear indications that the experimental points which describe these curves are obtained at apparent equilibria which are observed when viscous fluid flow has ceased; and any further changes in the fluid distribution are the result of much slower mass transfer processes, such as diffusion. Unless stated otherwise, this discussion applies to a stable packing of equal, smooth, hydrophilic spheres supported by a suction plate with water as the wetting phase and air as the nonwetting phase. SPEJ P. 15ˆ


Author(s):  
Thorvald Abel Engh ◽  
Geoffrey K. Sigworth ◽  
Anne Kvithyld

Covers the field of recycling and refining of metals. An important point the book stresses is that the principles are the same in the treatment of various different metals. The book answerd why it is important to have a clean and properly alloyed metal from recycling and refined metal? The text covers basic thermodynamics, physical and transport properties, mixing, mass transfer and numerical models. Further it identifies problems and described methods for removal of dissolved impurity elements, particles and inclusions, also during solidification. And lastly applications remelting and addition of alloys, recycling and challenges and specific processes for each metal are included. The book is self-contained.


Author(s):  
E. D. Rogdakis ◽  
V. D. Papaefthimiou

One of the most important components of an absorption air-conditioning/heat pump system is the absorber, where the refrigerant water vapour is absorbed into the liquid solution. While absorption systems have been in use for several years, the complex transport phenomena occurring in the absorber are not fully elucidated yet. Thus, an attempt is made to model the absorption process of water vapour in aqueous solutions of lithium bromide considering a falling-film, vertical-tube absorber. The proposed analysis is based on the formulation of four differential equations describing the spatial variation (parallel to the tube-axis) of solution mass, temperature, mass fraction and coolant temperature. The system of ordinary differential equations is numerically solved using a non-stiff numerical method. Thermophysical properties and especially, heat and mass transfer coefficients are calculated using widely-accepted and reliable relationships, which are extracted from the literature using recently published information on wavy-laminar flows. In the present study, the questionable assumption of treating the water vapour as an ideal gas is heavily modified utilizing. Consequently, the hypothesis of saturated water vapour at the steam-solution interaction surface is revised by introducing an energy difference between the superheated steam and the liquid water within the binary solution. The last correction encouraged us to compare theoretical results for solution temperature, mass fraction and mass flow rate, which were obtained using both assumptions. It was proved that the initial treatment causes an underestimation of the absorbed steam mass and correspondingly, an underestimation of solution temperature and mass fraction at the mass exchange interface. An attempt is made also to identify the effect of mass transfer coefficient on the effectiveness of the absorption process and on the energy differences between the superheated steam and the liquid water either as pure substance or as component of the binary mixture. It was shown that the increase of mass transfer coefficient leads to an increase of steam mass transfer rate and to a corresponding decrease of solution temperature slope at the entrance of a tube. Correspondingly, the increase of mass transfer coefficient results in an increase of heat of absorption and heat of dilution at the same variation range of the solution mass fraction.


2021 ◽  
Author(s):  
Elham Jafar-Salehi

The objective of this research was to study the solidification process of binary molten metals. This study was conducted in three phases. One was to estimate the thermodiffusion factor, two was to simulate the effect of natural convection and radiation on the velocity, temperature, and concentration distributions, and the third was to investigate the solidification process of binary molten metals using the proposed thermodiffusion factors. The proposed expression for the estimation of thermodiffusion factor was based on the physical properties of the mixture constituents. The estimated thermodiffusion factor was used to study thermosolutal convection in a quartz enclosure filled with molten Sn-Bi alloy. Two simulations were carried out: top heating and bottom heating. The sidewalls in both cases were exposed to convection and radiation. Numerical results show that in the case of top heating, the distribution of temperature and concentration are linear, but species segregation occurs due to the thermodiffusion effect. In the bottom heating case, boundary-driven convective flow develops with a large Rayleigh number (Ra) where an increase in the Ra number negates thermodiffusion due to the development of strong mixing. The results of these simulations showed that the effect of convection and radiation are negligible. In phase three, finite element method (FE) was employed to investigate the effect of thermodiffusion during vertical solidification of binary molten metal alloys with bottom cooling. The systems considered here are tin-bismuth (Sn-Bi), tin-cadmium (Sn-Cd), tin-zinc (Sn-Zn), tin-lead (Sn-Pb), tin-gallium (Sn-Ga), and bismuth-lead (Bi-Pb) binary molten metals. The geometry under study was a cylindrical cavity. The FE model was constructed using a 2D axisymmetric element to represent a 3D cyclindrical model. Two cases were studied: one without and one with the effect of thermodiffusion. The simulation including thermodiffusion showed slight variation from the simulation without thermodiffusion, in that thermodiffusion causes a slightly faster solidification and a more uniform concentration distribution if the thermodiffusion coefficient is greater than zero (DT > 0). The main object of this research is development of a more accurate thermodiffusion factor, and applying it in a numerical simulation to study its effects on radiation, natural convection, and solidification processes.


Sign in / Sign up

Export Citation Format

Share Document