Linear Processes

Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

Here we apply different methods to establish the Gaussian approximation to linear statistics of a stationary sequence, including stationary linear processes, near-stationary processes, and discrete Fourier transforms of a strictly stationary process. More precisely, we analyze the asymptotic behavior of the partial sums associated with a short-memory linear process and prove, in particular, that if a weak limit theorem holds for the partial sums of the innovations then a related result holds for the partial sums of the linear process itself. We then move to linear processes with long memory and obtain the CLT under various dependence structures for the innovations by analyzing the asymptotic behavior of linear statistics. We also deal with the invariance principle for causal linear processes or for linear statistics with weakly associated innovations. The last section deals with discrete Fourier transforms, proving, via martingale approximation, central limit behavior at almost all frequencies under almost no condition except a regularity assumption.

Author(s):  
Florence Merlevède ◽  
Magda Peligrad ◽  
Sergey Utev

We start by stating the need for a Gaussian approximation for dependent structures in the form of the central limit theorem (CLT) or of the functional CLT. To justify the need to quantify the dependence, we introduce illustrative examples: linear processes, functions of stationary sequences, recursive sequences, dynamical systems, additive functionals of Markov chains, and self-interactions. The limiting behavior of the associated partial sums can be handled with tools developed throughout the book. We also present basic notions for stationary sequences of random variables: various definitions and constructions, and definitions of ergodicity, projective decomposition, and spectral density. Special attention is given to dynamical systems, as many of our results also apply in this context. The chapter also surveys the basic theory of the convergence of stochastic processes in distribution, and introduces the reader to tightness, finite-dimensional convergence, and the need for maximal inequalities. It ends with the concepts of the moderate deviations principle and its functional form.


Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3925-3935
Author(s):  
Yu Miao ◽  
Qinghui Gao ◽  
Shuili Zhang

In this paper, we consider the following linear process Xn = ?? i=-? Ci?n-i, n ? Z, and establish the central limit theorem of the randomly indexed partial sums Svn := X1 +... + Xvn, where {ci,i?Z} is a sequence of real numbers, {?n,n?Z} is a stationary m-dependent sequence and {vn;n?1} is a sequence of positive integer valued random variables. In addition, in order to show the main result, we prove the central limit theorems for randomly indexed m-dependent random variables, which improve some known results.


2017 ◽  
Vol 93 (3) ◽  
pp. 323-333 ◽  
Author(s):  
Fabian L. Kriegel ◽  
Ralf Köhler ◽  
Jannike Bayat-Sarmadi ◽  
Simon Bayerl ◽  
Anja E. Hauser ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
F. Buendía-Fuentes ◽  
M. A. Arnau-Vives ◽  
A. Arnau-Vives ◽  
Y. Jiménez-Jiménez ◽  
J. Rueda-Soriano ◽  
...  

Introduction. Artifactual variations in the ST segment may lead to confusion with acute coronary syndromes. Objective. To evaluate how the technical characteristics of the recording mode may distort the ST segment. Material and Method. We made a series of electrocardiograms using different filter configurations in 45 asymptomatic patients. A spectral analysis of the electrocardiograms was made by discrete Fourier transforms, and an accurate recomposition of the ECG signal was obtained from the addition of successive harmonics. Digital high-pass filters of 0.05 and 0.5 Hz were used, and the resulting shapes were compared with the originals. Results. In 42 patients (93%) clinically significant alterations in ST segment level were detected. These changes were only seen in “real time mode” with high-pass filter of 0.5 Hz. Conclusions. Interpretation of the ST segment in “real time mode” should only be carried out using high-pass filters of 0.05 Hz.


1992 ◽  
Vol 82 (2) ◽  
pp. 999-1017
Author(s):  
K. L. McLaughlin ◽  
J. R. Murphy ◽  
B. W. Barker

Abstract A linear inversion procedure is introduced that images weak velocity anomalies using amplitudes of transmitted seismic waves. Using projection operators from geometrical ray theory, an image of an anomaly is constructed from amplitudes recorded at arrays of receivers using arrays of sources. The image is related to the velocity anomaly by a second-order partial-differential equation that is inverted using 2-D discrete Fourier transforms. As an example of the inversion procedure, magnitude residuals for European stations recording Shagan River explosions are used to image the deep lithospheric anomaly beneath the Shagan River test site described in Part 1. This formal inversion analysis confirms the existence of a small-scale lateral heterogeneity located 50 km west-northwest of the test site at a probable depth between 80 and 100 km and indicates that it is consistent with a deterministic 1.5% peak-to-peak (or 0.5% rms) velocity anomaly with a scale length of about 3 km. 3-D dynamic raytracing is then used to verify that the inferred laterally varying structure produces amplitude fluctuations consistent with observations.


Sign in / Sign up

Export Citation Format

Share Document