On the Independent Emergence of Space-time

2020 ◽  
pp. 183-194
Author(s):  
Richard Healey

Physics might show that space-time is an emergent structure without describing its ontological basis. Space and time are fundamental to metaphysics and physics. Their union remained fundamental after special relativity doomed each separately to fade away as a mere shadow of the space-time that Einstein later took to exist only as a structural quality of the gravitational field of general relativity. But problems meshing general relativity with quantum theory appear to show that space-time structure is not fundamental but emerges within a quantum theory of gravity. In a pragmatist view, quantum theory is typically applied not to represent target systems but to guide rational credence about events involving other systems. Applied to a gravitational field, quantum theory may guide credence about events in an emergent space-time without itself representing that field. If so, a fundamental physical theory would not describe any ultimate ground of space-time and its contents.

Author(s):  
Mauro Carfora

A brief introduction to the scientic work of Stephen Hawking and to his contributions to our understanding of the interplay between general relativity and quantum theory.


2010 ◽  
Vol 19 (14) ◽  
pp. 2353-2359 ◽  
Author(s):  
F. I. COOPERSTOCK ◽  
M. J. DUPRE

In this essay, we introduce a new approach to energy–momentum in general relativity. Space–time, as opposed to space, is recognized as the necessary arena for its examination, leading us to define new extended space–time energy and momentum constructs. From local and global considerations, we conclude that the Ricci tensor is the required element for a localized expression of energy–momentum to include the gravitational field. We present and rationalize a fully invariant extended expression for space–time energy, guided by Tolman's well-known energy integral for an arbitrary bounded stationary system. This raises fundamental issues which we discuss. The role of the observer emerges naturally and we are led to an extension of the uncertainty principle to general relativity, of particular relevance to ultra-strong gravity.


2020 ◽  
pp. 41-70
Author(s):  
Dean Rickles

In this chapter we examine the very earliest work on the problem of quantum gravity (understood very liberally). We show that, even before the concept of the quantization of the gravitational field in 1929, there was a fairly lively investigation of the relationships between gravity and quantum stretching as far back as 1916, and certainly no suggestion that such a theory would not be forthcoming. Indeed, there are, rather, many suggestions explicitly advocating that an integration of quantum theory and general relativity (or gravitation, at least) is essential for future physics, in order to construct a satisfactory foundation. We also see how this belief was guided by a diverse family of underlying agendas and constraints, often of a highly philosophical nature.


2016 ◽  
Vol 8 (5) ◽  
pp. 44
Author(s):  
Edward A. Walker

<p class="1Body">A summarization of the Alcubierre metric is given in comparison to a new metric that has been formulated based on the theoretical assertion of a recently published paper entitled “gravitational space-time curve generation via accelerated particles”. The new metric mathematically describes a warp field where particle accelerators can theoretically generate gravitational space-time curves that compress or contract a volume of space-time toward a hypothetical vehicle traveling at a sub-light velocity contingent upon the amount of voltage generated. Einstein’s field equations are derived based on the new metric to show its compatibility to general relativity. The “time slowing” effects of relativistic gravitational time dilation inherent to the gravitational field generated by the particle accelerators is mathematically shown to be counteracted by a gravitational equilibrium point between an arrangement of two equal magnitude particle accelerators. The gravitational equilibrium point produces a volume of flat or linear space-time to which the hypothetical vehicle can traverse the region of contracted space-time without experiencing time slippage. The theoretical warp field possessing these attributes is referred to as the two gravity source warp field which is mathematically described by the new metric.</p>


Author(s):  
S. Majid

We consider Hilbert’s problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space–time as motivated by this non-standard philosophy, including a new toy model of gravity on a space–time consisting of four points forming a square. This article is part of the theme issue ‘Hilbert’s sixth problem’.


1988 ◽  
Vol 03 (13) ◽  
pp. 1227-1229 ◽  
Author(s):  
A. WIDOM ◽  
C.C. CHEN

Experimental probes of the anomalous magnetic moment of the muon, which are sufficiently sensitive to probe electro-weak unification contributions to (g−2), are also sufficiently sensitive to test an interesting feature of general relativity. The gravitational field of the earth produces a background space-time metric which will influence (g−2) measurements.


2009 ◽  
Vol 21 (02) ◽  
pp. 155-227 ◽  
Author(s):  
RODERICH TUMULKA

The Ghirardi–Rimini–Weber (GRW) theory is a physical theory that, when combined with a suitable ontology, provides an explanation of quantum mechanics. The so-called collapse of the wave function is problematic in conventional quantum theory but not in the GRW theory, in which it is governed by a stochastic law. A possible ontology is the flash ontology, according to which matter consists of random points in space-time, called flashes. The joint distribution of these points, a point process in space-time, is the topic of this work. The mathematical results concern mainly the existence and uniqueness of this distribution for several variants of the theory. Particular attention is paid to the relativistic version of the GRW theory that was developed in 2004.


2021 ◽  
Vol 13 (1) ◽  
pp. 43-54
Author(s):  
Horia DUMITRESCU ◽  
Vladimir CARDOS ◽  
Radu BOGATEANU

The gravity or reactive bundle energy is the outlet of the morphogenetic impact, known as “BIG BANG”, creating a bounded ordered/structured universe along with the solar system, including the EARTH-world with its human race. Post-impact, the huge kinetic energy is spread into stellar bodies associated with the light flux under strong mutual connections or gravitational bundle. Einstein’s general relativity theory including the gravitational field can be expressed under a condensed tensor formulation as E  R − Rg =  T where E defines the geometry via a curved space-time structure (R) over the gravity field (1/2Rg), embedded in a matter distribution T The fundamental (ten non-linear partial differential) equations of the gravitational field are a kind of the space-time machine using the curvature of a four-dimensional space-time to engender the gravity field carrying away material structures. Gravity according to the curved space-time theory is not seen as a gravitational force, but it manifests itself in the relativistic form of the space-time curvature needing the constancy of the light speed. But the constant light velocity makes the tidal wave/pulsating energy, a characteristic of solar energy, impossible. The Einstein’s field equation, expressed in terms of tensor formulation along with the constant light speed postulate, needs two special space-time tensors (curvature and torsion) in 4 dimensions, where for the simplicity the torsion/twist tensor is less well approximated (Bianchi identity) leading to a constant/frozen gravity (twist-free gravity).The non-zero torsion tensor plays a significant physical role in the planetary dynamics as a finest gear of a planet, where its spinning rotation is directly connected to the own work and space-time structure (or clock), controlled by light fluctuations (or tidal effect of gravity). The spin correction of Einstein’s gravitational field refers to the curvature-torsion effect coupled with fluctuating light speed. The mutual curvature-torsion bundle self-sustained by the quantum fluctuations of light speed engenders helical gravitational wave fields of a quantum nature where bodies orbit freely in the light speed field (cosmic wind). In contrast to the Einstein’s field equation describing a gravitational frozen field, a quantum tidal gravity model is proposed in the paper.


Sign in / Sign up

Export Citation Format

Share Document