Special Algebraic Notions

Author(s):  
Daniel Canarutto

A presentation of notions that can be found in the literature, though not always in the precise form that we need: unit spaces and physical scales; complex vector spaces together with conjugate and anti-dual spaces; Hermitian tensors and anti-Hermitian Lie algebra; Clifford algebra.

1968 ◽  
Vol 75 (8) ◽  
pp. 925
Author(s):  
Homer Bechtell ◽  
Frank S. Cater
Keyword(s):  

2019 ◽  
Vol 27 (1) ◽  
pp. 47-60
Author(s):  
Roland Coghetto

Summary Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]). It is also equivalent to the notion of “Mesure algèbrique”1, to the opposite of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9]. In the second part, we introduce the classic notion of “cross-ratio” of 4 points aligned in a real vector space. Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion3 [9]: The cross-ratio of a quadruple of distinct points on the real line with coordinates x1, x2, x3, x4 is given by: $$({x_1},{x_2};{x_3},{x_4}) = {{{x_3} - {x_1}} \over {{x_3} - {x_2}}}.{{{x_4} - {x_2}} \over {{x_4} - {x_1}}}$$ In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leonczuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4]. Nakasho and Shidama have developed a solution to explore the notions introduced by different authors4 [7]. The definitions can be directly linked in the HTMLized version of the Mizar library5. The study of the cross-ratio will continue within the framework of the Klein- Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


1974 ◽  
Vol 26 (3) ◽  
pp. 734-745 ◽  
Author(s):  
Uri Fixman ◽  
Frank A. Zorzitto

In connection with the study of perturbation methods for differential eigenvalue problems, Aronszajn put forth a theory of systems (X, Y; A, B) consisting of a pair of linear transformations A, B:X → Y (see [1]; cf. also [2]). Here X and Y are complex vector spaces, possibly of infinite dimension. The algebraic aspects of this theory, where no restrictions of topological nature are imposed, where developed in [3] and [5]. We hasten to point out that the category of C2-systems (definition in § 1) in which this algebraic investigation takes place is equivalent to the category of all right modules over the ring of matrices of the form


1976 ◽  
Vol 28 (4) ◽  
pp. 889-896
Author(s):  
Frank Zorzitto

Consider a system of N linear transformations A1, … , AN: V → W, where F and IF are complex vector spaces. Denote it for short by (F, W). A pair of subspaces X ⊂ V, Y ⊂ W such that determines a subsystem (X, Y) and a quotient system (V/X, W/Y) (with the induced transformations). The subsystem (X, Y) is of finite codimension in (V, W) if and only if V/X and W / Y are finite-dimensional. It is a direct summand of (V, W) in case there exist supplementary subspaces P of X in F and Q of F in IF such that (P, Q) is a subsystem.


1976 ◽  
Vol 19 (4) ◽  
pp. 385-402 ◽  
Author(s):  
Bernhard Banaschewski ◽  
Evelyn Nelson

The binary tensor product, for modules over a commutative ring, has two different aspects: its connection with universal bilinear maps and its adjointness to the internal hom-functor. Furthermore, in the special situation of finite-dimensional vector spaces, the tensor product can also be described in terms of dual spaces and the internal hom-functor. The aim of this paper is to investigate these relationships in the setting of arbitrary concrete categories.


1967 ◽  
Vol 21 (99) ◽  
pp. 502
Author(s):  
A. S. H. ◽  
Frank S. Cater
Keyword(s):  

2017 ◽  
Vol 14 (11) ◽  
pp. 1750160 ◽  
Author(s):  
Viktor Abramov

Given a matrix Lie algebra one can construct the 3-Lie algebra by means of the trace of a matrix. In the present paper, we show that this approach can be extended to the infinite-dimensional Lie algebra of vector fields on a manifold if instead of the trace of a matrix we consider a differential 1-form which satisfies certain conditions. Then we show that the same approach can be extended to matrix Lie superalgebras [Formula: see text] if instead of the trace of a matrix we make use of the supertrace of a matrix. It is proved that a graded triple commutator of matrices constructed with the help of the graded commutator and the supertrace satisfies a graded ternary Filippov–Jacobi identity. In two particular cases of [Formula: see text] and [Formula: see text], we show that the Pauli and Dirac matrices generate the matrix 3-Lie superalgebras, and we find the non-trivial graded triple commutators of these algebras. We propose a Clifford algebra approach to 3-Lie superalgebras induced by Lie superalgebras. We also discuss an application of matrix 3-Lie superalgebras in BRST-formalism.


Sign in / Sign up

Export Citation Format

Share Document