Spinors and Minkowski Space

Author(s):  
Daniel Canarutto

A partly original approach to spinor geometry, showing how a 2-dimensional vector space, without any further assumpions, generates by natural constructions the fundamental algebraic structures needed to deal with spacetime geometry and particles with spin. Several related notions are expressed in a concise, intrinsic form.


2019 ◽  
Vol 19 (05) ◽  
pp. 2050086 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
K. Prabha Ananthi

Let [Formula: see text] be a k-dimensional vector space over a finite field [Formula: see text] with a basis [Formula: see text]. The nonzero component graph of [Formula: see text], denoted by [Formula: see text], is a simple undirected graph with vertex set as nonzero vectors of [Formula: see text] such that there is an edge between two distinct vertices [Formula: see text] if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have nonzero scalars. In this paper, we find the vertex connectivity and girth of [Formula: see text]. We also characterize all vector spaces [Formula: see text] for which [Formula: see text] has genus either 0 or 1 or 2.



1953 ◽  
Vol 37 (320) ◽  
pp. 156
Author(s):  
J. L. B. Copper ◽  
H. L. Hamburger ◽  
M. E. Grimshaw




2011 ◽  
Vol 85 (1) ◽  
pp. 19-25
Author(s):  
YIN CHEN

AbstractLet Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.



Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1382
Author(s):  
Roger D. Maddux

The Theorems of Pappus and Desargues (for the projective plane over a field) are generalized here by two identities involving determinants and cross products. These identities are proved to hold in the three-dimensional vector space over a field. They are closely related to the Arguesian identity in lattice theory and to Cayley-Grassmann identities in invariant theory.



1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.





Sign in / Sign up

Export Citation Format

Share Document