Natural Selection, Adaptation, and the Recovery of Development

Author(s):  
David J. Depew

This chapter begins by contrasting Spencer’s view of natural selection with Darwin’s understanding of its “paramount power.” Darwin’s interpretation contains seeds of a defining mark of the modern evolutionary synthesis: Adaptation is necessarily a consequence of natural selection working as a “creative” factor over multiple generations. The chapter distinguishes between several versions of the modern synthesis in order to argue that some are less at odds than others with the current turn toward development and in order to suggest that allowing ontogeny to be the generative locus of (much) selectable variation makes for more continuity between the developmentalist turn and the modern synthesis than is sometimes thought. Shifting “adaptation” from trans-generational populations to ontogenetically construed organisms is in tension with the modern evolutionary synthesis, but not as much as some believe.

Author(s):  
Denis M. Walsh ◽  
Philippe Huneman

The modern evolutionary synthesis arose out of the conjunction of the Mendelian theory of inheritance and the neo-Darwinian theory of population change early in the 20th century.1 In the nearly 100 years since its inception, the modern evolutionary synthesis has grown to encompass practically all fields of comparative biology—ecology, ethology, paleontology, systematics, cell biology, physiology, genetics, development. Theodosius Dobzhansky’s dictum—“nothing in biology makes sense except in the light of evolution” (...


2021 ◽  
Author(s):  
Rasmus Skern-Mauritzen ◽  
Thomas Nygaard Mikkelsen

Life is information dancing through time, embedded in matter and shaped by natural selection. Few biologists or philosophers concerned with evolution would object to this description. This apparent accord could be taken to indicate universal agreement on the forces shaping evolution; but the devil is in the details and disagreement is apparent if one looks behind the curtain. The decade strong prevalent paradigm of the Modern Synthesis holds the position that evolution happens by random changes and natural selection acting on genomic inheritance. But there is a new kid on the block; the proponents of an Extended Evolutionary Synthesis argue that inheritance is more than genomes and includes epigenetic information, niche constructs (ranging from the meerkats dens to humans railroads) and culture among other factors – and that these factors are both inheritance and a force shaping evolution. Here we introduce The Information Continuum Hypothesis of Evolution; a conceptual framework that focus on the inherited information rather than the diverse representations this inherited information may have (DNA, RNA, epigenetic markers, proteins, culture etc.). As a tool we introduce the concept “hereditome” to describe the combined inherited representations of information. We believe this framework may help bridge the apparent gap between the Modern Synthesis and the Extended Evolutionary Synthesis.


Author(s):  
Philippe Huneman

Considering challenges to the modern synthesis (MS), this chapter reconstructs an explanatory scheme proper to the MS. It contrasts it with the explanatory scheme proper to some alternatives to the MS. It considers which empirical facts should compel us to adopt the alternative scheme, or stand with the MS, or consider a weakly attenuated form of its explanatory scheme. Hence the last section focuses on the form of variation: Given that many findings are accumulating concerning the not purely random nature of variation, it asks which specific patterns of variation would be likely to support an alternative explanatory scheme. It argues that neither biased variation nor random genotypic variation is likely to vindicate a specific explanatory scheme.


Biosemiotics ◽  
2021 ◽  
Author(s):  
Eric Schaetzle ◽  
Yogi Hendlin

AbstractDenis Noble convincingly describes the artifacts of theory building in the Modern Synthesis as having been surpassed by the available evidence, indicating more active and less gene-centric evolutionary processes than previously thought. We diagnosis the failure of theory holders to dutifully update their beliefs according to new findings as a microcosm of the prevailing larger social inability to deal with competing paradigms. For understanding life, Noble suggests that there is no privileged level of semiotic interpretation. Understanding multi-level semiosis along with organism and environment contrapunctally, according to Jakob von Uexküll’s theoretical biology, can contribute to the emerging extended evolutionary synthesis.


2017 ◽  
Vol 7 (5) ◽  
pp. 20160145 ◽  
Author(s):  
Douglas J. Futuyma

Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an ‘extended evolutionary synthesis’. ‘Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected ‘process’ of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.


2015 ◽  
Vol 19 (2) ◽  
pp. 263
Author(s):  
Leonardo Augusto Luvison Araújo ◽  
Aldo Mellender De Araújo

http://dx.doi.org/10.5007/1808-1711.2015v19n2p263The Modern Evolutionary Synthesis relegated the ontogenetic development to a “black box”. In this article, we argue that the absence of ontogenetic development in the Evolutionary Synthesis was due its strong foundation in transmission genetics. We discuss three research strategies of transmission genetics that created an incompatibility with the ontogenetic development: (i) particulate inheritance model; (ii) population as locus for genetics research; (iii) and experimental tools that have been applied to remove “non-heritable fluctuations” from ontogenetic and environmental effects. These practices have contributed to the strength of the genetic inheritance, but also excluded the ontogenetic development from the explanation of heredity and evolution. This distinction has been perpetuated in the Evolutionary Synthesis.


2021 ◽  
Author(s):  
Rose Trappes ◽  
Behzad Nematipour ◽  
Marie I. Kaiser ◽  
Ulrich Krohs ◽  
Koen J. van Benthem ◽  
...  

The debate between the extended evolutionary synthesis (EES) and the modern synthesis (MS) partly relies on different interpretations of niche construction. We dissect the umbrella term of niche construction into three separate mechanisms: niche construction (taken in a narrow sense), in which individuals make changes to the environment; niche choice, in which individuals select an environment; and niche conformance, in which individuals change their phenotypes. Each of these individual-level mechanisms affects an individual’s phenotype-environment match, its fitness, and its individualized niche, defined in terms of the environmental conditions under which an individual can survive and reproduce. Our conceptual framework distinguishes several ways in which individuals alter the selective regimes that they and other organisms experience. It also places clear emphasis on individual differences and construes niche construction and other processes as evolved mechanisms. We therefore argue that our framework helps to resolve the tensions between EES and MS.


Author(s):  
Gerard G. Dumancas

Population genetics is the study of the frequency and interaction of alleles and genes in population and how this allele frequency distribution changes over time as a result of evolutionary processes such as natural selection, genetic drift, and mutation. This field has become essential in the foundation of modern evolutionary synthesis. Traditionally regarded as a highly mathematical discipline, its modern approach comprises more than the theoretical, lab, and fieldwork. Supercomputers play a critical role in the success of this field and are discussed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document