Coda: Some Reflections on the Long-Term Ecological Research Program

Author(s):  
William H. Schlesinger

Ecology has a history of long-term studies that offer great insight to ecosystem processes. The advent of the Long-Term Ecological Research (LTER) program institutionalized long-term studies with some core measurements at a selection of sites across North America. The most successful LTER sites are those that have an energetic leader with a clear vision, who has guided the work over many years. Several LTER sites have established successful education programs for K–12 and college-age students, as well as for science policy-makers. Implementation of more and better cross-site work would be welcome. The various essays in this volume reflect a broad range of experiences among participants in the LTER program. Nearly all are positive: only mad dogs bite the hand that feeds them. All authors appreciate the advantages of long-term funding for their research and lament that funding of the LTER program by the National Science Foundation (NSF) is so limited. There are numerous testimonials for how the LTER program has changed and broadened participation in collaborative science. The real question is whether the LTER program has allowed science to proceed faster, deeper, broader, and with more critical insight than if the program had not been created. To answer that question, I offer a few personal reflections on the LTER program. First, we must note that long-term research existed well before the LTER program. Edmondson began his long-term measurements of exogenous phosphorus in Lake Washington in the early 1950s (Edmondson 1991). Across the country, Herb Bormann and Gene Likens began long-term studies, now in their 50th year, of forest biogeochemistry at Hubbard Brook in 1963 (Likens 2013). Each of these long-term studies enjoys ample coverage in every text of introductory ecology. The advantages of long-term research are undisputed among those who are funded for it. Indeed, NSF embraces a wide variety of decade-long studies with its Long-Term Research in Environmental Biology (LTREB) program. The authors of several chapters recall how Howard Odum’s early work focused their attention on the connections between large units of the landscape.

Author(s):  
Christopher Hamlin

There are many precedents for long-term research in the history of science. Long-Term Ecological Research (LTER) program’s current identity reflects significant change—intended and accidental, both consensual and conflictual—from research concerns that were prevalent in the 1980s. LTER program has pioneered modes of research organization and professional norms that are increasingly prominent in many areas of research and that belong to a significant transformation in the social relations of scientific research. The essays in this volume explore the impact of the LTER program, a generation after its founding, on both the practice of ecological science and the careers of scientists. The authors have applied the agenda of long- term scrutiny to their own careers as LTER researchers. They have recognized the LTER program as distinct, even perhaps unique, both in the ways that it creates knowledge and in the ways that it shapes careers. They have reflected on how they have taught (and were taught) in LTER settings, on how they interact with one another and with the public, and on how research in the LTER program has affected them “as persons.” A rationale for this volume is LTER’s distinctiveness. In many of the chapters, and in other general treatments of the LTER program, beginning with Callahan (1984), one finds a tone of defensiveness. Sometimes the concerns are explicit: authors (e.g., Stafford, Knapp, Lugo, Morris; Chapters 5, 22, 25, 33, respectively) bemoan colleagues who dismiss LTER as mere monitoring instead of serious science or who resent LTER’s independent funding stream. But more broadly, there is concern that various groups, ranging from other bioscientists to the public at large, may not appreciate the importance of long-term, site-specific environmental research. Accordingly, my hope here is to put LTER into several broader contexts. I do so in three ways. First, to mainstream LTER within the history of science, I show that the LTER program is not a new and odd way of doing science but rather exemplifies research agendas that have been recognized at least since the seventeenth century in the biosciences and beyond.


Author(s):  
Bruce P. Hayden

As a scientist, the Long-Term Ecological Research (LTER) program has been on my mind for more than three decades. As an educator, I have served in the classroom for 41 years. The merger of the physical and the ecological sciences was at the core of my teaching philosophy. As a science communicator, I informed the general public on issues of climate and climate change. As a collaborator, I found that understanding strengths and weaknesses in collaborative partnerships best ensures success. As a science leader, I served at the National Science Foundation (NSF) as the Director of the Division of Environmental Biology (DEB), established the Schoolyard LTER Program, and launched the National Ecological Observatory Network (NEON). My disciplinary background includes formal graduate education at the University of Wisconsin in meteorology, climatology, and paleoclimatology, as well as in oceanography and biology (mycology, botany, zoology, and genecology). As a postdoctoral fellow, my scientific identity was on track to culminate as a paleoclimatologist. As an assistant and associate professor, my identity morphed to include coastal geomorphology (Hayden et al. 1995). Finally, my experiences in the LTER program have vectored my career toward the interactions of climate and vegetation (Hayden 1998). My affiliation is with the Virginia Coast Reserve (VCR) site in the LTER program (1986–2014). As one of the founding principal investigators of the VCR site, I have served in subsequent renewals as its principal or co-principal investigator. Our site-based research plan focused on the Virginia Coast Reserve on Virginia’s eastern shore with a focus on the dynamics of the chain of 14 barrier islands, bounded by the entrance to the Chesapeake Bay to the south and Assateague Barrier Island to the north. This peninsula is 100 km in length by 20 km in width. Only the islands fronting the Mississippi delta are more dynamic in both the temporal and spatial domains. Prior to joining the LTER program, my research was hemispheric to regional in scope, and it focused on the environmental dynamics of the Atlantic Coast from Florida to Cape Cod at 50-m intervals (Fenster and Hayden 2007).


2020 ◽  
Author(s):  
Ellen A R Welti ◽  
Anthony Joern ◽  
aaron ellison ◽  
David C. Lightfoot ◽  
Sydne Record ◽  
...  

In an article recently published in Nature Ecology & Evolution (Crossley et al. 2020 “No net insect abundance and diversity declines across US Long Term Ecological Research sites”), sampling effort within Long-Term Ecological Research (LTER) datasets was assumed to be consistent across years. Given the complex history of many long-term datasets at LTER sites, this assumption does not often hold and we believe this assumption led to errors in Crossley et al.’s analysis. Here we first use the Konza Prairie grasshopper dataset as an example of how changes in sampling locations and effort can cause errors when data are assumed to be collected with invariant sampling. Second, we describe similar and additional errors in data use from 7 of the 13 LTER sites included in Crossley et al. (2020)’s analysis.


Ecosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
David M. Iwaniec ◽  
Michael Gooseff ◽  
Katharine N. Suding ◽  
David Samuel Johnson ◽  
Daniel C. Reed ◽  
...  

2021 ◽  
pp. 100025
Author(s):  
Tamara K. Harms ◽  
Peter M. Groffman ◽  
Lihini Aluwihare ◽  
Chris Craft ◽  
William R Wieder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document