Higher‐order Logic

Author(s):  
Stewart Shapiro

The philosophical literature contains numerous claims on behalf of and numerous claims against higher-order logic. Virtually all of the issues apply to second-order logic (vis-à-vis first-order logic), so this article focuses on that. It develops the syntax of second-order languages and present typical deductive systems and model-theoretic semantics for them. This will help to explain the role of higher-order logic in the philosophy of mathematics. It is assumed that the reader has at least a passing familiarity with the theory and metatheory of first-order logic.

10.29007/zpg2 ◽  
2018 ◽  
Author(s):  
Alexander Leitsch ◽  
Tomer Libal

The efficiency of the first-order resolution calculus is impaired when lifting it to higher-order logic. The main reason for that is the semi-decidability and infinitary natureof higher-order unification algorithms, which requires the integration of unification within the calculus and results in a non-efficient search for refutations.We present a modification of the constrained resolution calculus (Huet'72) which uses an eager unification algorithm while retaining completeness. Thealgorithm is complete with regard to bounded unification only, which for many cases, does not pose a problem in practice.


Author(s):  
Shaughan Lavine

In first-order predicate logic there are symbols for fixed individuals, relations and functions on a given universe of individuals and there are variables ranging over the individuals, with associated quantifiers. Second-order logic adds variables ranging over relations and functions on the universe of individuals, and associated quantifiers, which are called second-order variables and quantifiers. Sometimes one also adds symbols for fixed higher-order relations and functions among and on the relations, functions and individuals of the original universe. One can add third-order variables ranging over relations and functions among and on the relations, functions and individuals on the universe, with associated quantifiers, and so on, to yield logics of even higher order. It is usual to use proof systems for higher-order logics (that is, logics beyond first-order) that include analogues of the first-order quantifier rules for all quantifiers. An extensional n-ary relation variable in effect ranges over arbitrary sets of n-tuples of members of the universe. (Functions are omitted here for simplicity: remarks about them parallel those for relations.) If the set of sets of n-tuples of members of a universe is fully determined once the universe itself is given, then the truth-values of sentences involving second-order quantifiers are determined in a structure like the ones used for first-order logic. However, if the notion of the set of all sets of n-tuples of members of a universe is specified in terms of some theory about sets or relations, then the universe of a structure must be supplemented by specifications of the domains of the various higher-order variables. No matter what theory one adopts, there are infinitely many choices for such domains compatible with the theory over any infinite universe. This casts doubt on the apparent clarity of the notion of ‘all n-ary relations on a domain’: since the notion cannot be defined categorically in terms of the domain using any theory whatsoever, how could it be well-determined?


1971 ◽  
Vol 36 (3) ◽  
pp. 414-432 ◽  
Author(s):  
Peter B. Andrews

In [8] J. A. Robinson introduced a complete refutation procedure called resolution for first order predicate calculus. Resolution is based on ideas in Herbrand's Theorem, and provides a very convenient framework in which to search for a proof of a wff believed to be a theorem. Moreover, it has proved possible to formulate many refinements of resolution which are still complete but are more efficient, at least in many contexts. However, when efficiency is a prime consideration, the restriction to first order logic is unfortunate, since many statements of mathematics (and other disciplines) can be expressed more simply and naturally in higher order logic than in first order logic. Also, the fact that in higher order logic (as in many-sorted first order logic) there is an explicit syntactic distinction between expressions which denote different types of intuitive objects is of great value where matching is involved, since one is automatically prevented from trying to make certain inappropriate matches. (One may contrast this with the situation in which mathematical statements are expressed in the symbolism of axiomatic set theory.).


2010 ◽  
Vol 16 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Peter Koellner

AbstractIn this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant and faithful against the backdrop of the strongest large cardinal hypotheses. We show that there is a close correspondence between the two hierarchies and we characterize the strongest logic in each hierarchy. On the first-order side, this leads to a new presentation of Woodin's Ω-logic. On the second-order side, we compare the strongest logic with full second-order logic and argue that the comparison lends support to Quine's claim that second-order logic is really set theory in sheep's clothing.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jie Zhang ◽  
Danwen Mao ◽  
Yong Guan

Theorem proving is an important approach in formal verification. Higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and stronger semantics. Higher-order logic is more expressive. This paper presents the formalization of the linear space theory in HOL4. A set of properties is characterized in HOL4. This result is used to build the underpinnings for the application of higher-order logic in a wider spectrum of engineering applications.


Author(s):  
Heda Festini

Hintikka’s game-theoretical semantics (GTS) is presented as an anti-Tarskian semantical approach to the context-dependent fragments of Englisch, which overcomes the usual notion of semantical realism. Analysing Hintikka’s critique of Tarski’s interpretation of the truth-conditional theory of meaning, its recursive fashion and the narrow notion of realism, Hintikka’s basic conception is presented in the following manner:1. the Context-Principle vs. the Frege Principle,2.First-order logic together with higher-order logic vs. the primacy of first-order logic,3.verificationist/falsificationist theory vs. Taraski’s narrow truth- conditional theory.Comparing some reviews of Hintikka’s GTS (M. Dummett, E. Itkonen, E. Saarinen, M. Hand) with a short examination of the antirealistic/realistic controversis by C. Wright and M. Dummett, the following was reached:Hintikka’s GTS introduces a new, more extended notion of realism, which embraces Taraski-type realistic semantics, Hintikka’s GTS and with this the question of the possibility to also include Dummett’s neoverificationism or other orientations, remains open.


2012 ◽  
Vol 7 ◽  
Author(s):  
Anders Søgaard ◽  
Søren Lind Kristiansen

Existing logic-based querying tools for dependency treebanks use first order logic or monadic second order logic. We introduce a very fast model checker based on hybrid logic with operators ↓, @ and A and show that it is much faster than an existing querying tool for dependency treebanks based on first order logic, and much faster than an existing general purpose hybrid logic model checker. The querying tool is made publicly available.


2018 ◽  
Vol 24 (1) ◽  
pp. 1-52
Author(s):  
PAOLO PISTONE

AbstractThe investigations on higher-order type theories and on the related notion of parametric polymorphism constitute the technical counterpart of the old foundational problem of the circularity (or impredicativity) of second and higher-order logic. However, the epistemological significance of such investigations has not received much attention in the contemporary foundational debate.We discuss Girard’s normalization proof for second order type theory or System F and compare it with two faulty consistency arguments: the one given by Frege for the logical system of the Grundgesetze (shown inconsistent by Russell’s paradox) and the one given by Martin-Löf for the intuitionistic type theory with a type of all types (shown inconsistent by Girard’s paradox).The comparison suggests that the question of the circularity of second order logic cannot be reduced to Russell’s and Poincaré’s 1906 “vicious circle” diagnosis. Rather, it reveals a bunch of mathematical and logical ideas hidden behind the hazardous idea of impredicative quantification, constituting a vast (and largely unexplored) domain for foundational research.


1999 ◽  
Vol Vol. 3 no. 3 ◽  
Author(s):  
Thomas Schwentick ◽  
Klaus Barthelmann

International audience Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to a formula of the form ∃ x_1,...,x_l, \forall y, φ where φ is r-local around y, i.e. quantification in φ is restricted to elements of the universe of distance at most r from y. \par From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player, easier and can thus simplify inexpressibility proofs. \par As another application, automata models are defined that have, on arbitrary classes of relational structures, exactly the expressive power of first-order logic and existential monadic second-order logic, respectively.


Author(s):  
Petar Vukmirović ◽  
Alexander Bentkamp ◽  
Jasmin Blanchette ◽  
Simon Cruanes ◽  
Visa Nummelin ◽  
...  

AbstractSuperposition is among the most successful calculi for first-order logic. Its extension to higher-order logic introduces new challenges such as infinitely branching inference rules, new possibilities such as reasoning about formulas, and the need to curb the explosion of specific higher-order rules. We describe techniques that address these issues and extensively evaluate their implementation in the Zipperposition theorem prover. Largely thanks to their use, Zipperposition won the higher-order division of the CASC-J10 competition.


Sign in / Sign up

Export Citation Format

Share Document