Fertilization and early embryology: Effect of pentoxifylline and progesterone on human sperm capacitation and acrosomal exocytosis

1994 ◽  
Vol 9 (11) ◽  
pp. 2103-2109 ◽  
Author(s):  
S. DasGupta ◽  
C. O'Toole ◽  
C.L. Mills ◽  
L.R. Fraser
2021 ◽  
Vol 35 (6) ◽  
Author(s):  
Paula A. Balestrini ◽  
Claudia Sanchez‐Cardenas ◽  
Guillermina M. Luque ◽  
Carolina Baro Graf ◽  
Jessica M. Sierra ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
R Rahban ◽  
A Rehfeld ◽  
C Schiffer ◽  
C Brenker ◽  
D. Louise Egeberg Palme ◽  
...  

Abstract Study question Do Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants affect the function of human sperm? Summary answer The SSRI-antidepressant Sertraline (e.g. Zoloft) inhibits the sperm-specific Ca2+ channel CatSper and affects human sperm function in vitro. What is known already In human sperm, CatSper translates changes of the chemical microenvironment into changes of the intracellular Ca2+ concentration ([Ca2+]i) and swimming behavior. CatSper is promiscuously activated by oviductal ligands, but also by synthetic chemicals that might disturb the fertilization process. It is well known that SSRIs have off-target actions on Ca2+, Na+, and K+ channels in somatic cells. Whether SSRIs affect the activity of CatSper is, however, unknown. Study design, size, duration We studied the action of the seven drugs belonging to the most commonly prescribed class of antidepressants, SSRIs, on resting [Ca2+]i and Ca2+ influx via CatSper in human sperm. The SSRI Sertraline was selected for in-depth analysis of its action on steroid-, prostaglandin-, pH-, and voltage-activation of human CatSper. Moreover, the action of Sertraline on sperm acrosomal exocytosis and penetration into viscous media was evaluated. Participants/materials, setting, methods The activity of CatSper was investigated in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. Acrosomal exocytosis was investigated using Pisum sativum agglutinin (PSA) and image cytometry. Sperm penetration in viscous media was evaluated using the Kremer test. Main results and the role of chance Four SSRIs increased [Ca2+]i, two out of which also attenuated ligand-induced Ca2+ influx via CatSper. In contrast, Sertraline decreased [Ca2+]i and almost completely suppressed ligand-induced Ca2+ influx via CatSper. Remarkably, the drug was about four-fold more potent to suppress prostaglandin- versus steroid-induced Ca2+ influx. Sertraline also suppressed alkaline- and voltage-activation of CatSper, indicating that the drug directly inhibits human CatSper. Finally, Sertraline suppressed ligand-induced acrosome reaction and sperm penetration into viscous media. Limitations, reasons for caution This is an in vitro study. Future studies have to assess the physiological relevance in vivo. Wider implications of the findings The off-target action of Sertraline on CatSper in human sperm might impair the fertilization process. In a research setting, Sertraline may be used to selectively inhibit prostaglandin-induced Ca2+ influx. Trial registration number CRU326


2009 ◽  
Vol 46 (10) ◽  
pp. 1420-1427 ◽  
Author(s):  
Eve de Lamirande ◽  
Geneviève Lamothe ◽  
Michèle Villemure

2021 ◽  
Vol 12 ◽  
Author(s):  
Andrés Aldana ◽  
Jorge Carneiro ◽  
Gustavo Martínez-Mekler ◽  
Alberto Darszon

The acrosome reaction (AR) is an exocytotic process essential for mammalian fertilization. It involves diverse physiological changes (biochemical, biophysical, and morphological) that culminate in the release of the acrosomal content to the extracellular medium as well as a reorganization of the plasma membrane (PM) that allows sperm to interact and fuse with the egg. In spite of many efforts, there are still important pending questions regarding the molecular mechanism regulating the AR. Particularly, the contribution of acrosomal alkalinization to AR triggering physiological conditions is not well understood. Also, the dependence of the proportion of sperm capable of undergoing AR on the physiological heterogeneity within a sperm population has not been studied. Here, we present a discrete mathematical model for the human sperm AR based on the physiological interactions among some of the main components of this complex exocytotic process. We show that this model can qualitatively reproduce diverse experimental results, and that it can be used to analyze how acrosomal pH (pHa) and cell heterogeneity regulate AR. Our results confirm that a pHa increase can on its own trigger AR in a subpopulation of sperm, and furthermore, it indicates that this is a necessary step to trigger acrosomal exocytosis through progesterone, a known natural inducer of AR. Most importantly, we show that the proportion of sperm undergoing AR is directly related to the detailed structure of the population physiological heterogeneity.


2001 ◽  
Vol 45 (1) ◽  
pp. 12-20 ◽  
Author(s):  
TOMOMI AOYAMA ◽  
YASUHIKO OZAKI ◽  
KAORU SUZUMORI ◽  
YASUHIKO OZAKI ◽  
MITOSHI KUNIMATSU ◽  
...  

2018 ◽  
Vol 234 (4) ◽  
pp. 5276-5288 ◽  
Author(s):  
Nicolás Gastón Brukman ◽  
Sol Yanel Nuñez ◽  
Lis del Carmen Puga Molina ◽  
Mariano Gabriel Buffone ◽  
Alberto Darszon ◽  
...  

Andrology ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 442-449 ◽  
Author(s):  
L. Mayorga ◽  
K. Altamirano ◽  
E. Zanni Ruiz ◽  
M. Pavarotti

2019 ◽  
Vol 25 (10) ◽  
pp. 587-600 ◽  
Author(s):  
Héctor Zapata-Carmona ◽  
Lina Barón ◽  
Lidia M Zuñiga ◽  
Emilce Silvina Díaz ◽  
Milene Kong ◽  
...  

Abstract One of the first events of mammalian sperm capacitation is the activation of the soluble adenyl cyclase/cAMP/protein kinase A (SACY/cAMP/PKA) pathway. Here, we evaluated whether the increase in PKA activity at the onset of human sperm capacitation is responsible for the activation of the sperm proteasome and whether this activation is required for capacitation progress. Viable human sperm were incubated with inhibitors of the SACY/cAMP/PKA pathway. The chymotrypsin-like activity of the sperm proteasome was evaluated using a fluorogenic substrate. Sperm capacitation status was evaluated using the chlortetracycline assay and tyrosine phosphorylation. To determine whether proteasomal subunits were phosphorylated by PKA, the proteasome was immunoprecipitated and tested on a western blot using an antibody against phosphorylated PKA substrates. Immunofluorescence microscopy analysis and co-immunoprecipitation (IPP) were used to investigate an association between the catalytic subunit alpha of PKA (PKA-Cα) and the proteasome. The chymotrypsin-like activity of the sperm proteasome significantly increased after 5 min of capacitation (P < 0.001) and remained high for the remaining incubation time. Treatment with H89, KT5720 or KH7 significantly decreased the chymotrypsin-like activity of the proteasome (P < 0.001). IPP experiments indicated that PKA inhibition significantly modified phosphorylation of proteasome subunits. In addition, PKA-Cα colocalized with the proteasome in the equatorial segment and in the connecting piece, and co-immunoprecipitated with the proteasome. This is the first demonstration of sperm proteasome activity being directly regulated by SACY/PKA-Cα. This novel discovery extends our current knowledge of sperm physiology and may be used to manage sperm capacitation during assisted reproductive technology procedures.


Sign in / Sign up

Export Citation Format

Share Document