mammalian sperm
Recently Published Documents


TOTAL DOCUMENTS

545
(FIVE YEARS 85)

H-INDEX

75
(FIVE YEARS 4)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Ester Sansegundo ◽  
Maximiliano Tourmente ◽  
Eduardo R. S. Roldan

Mammalian sperm differ widely in sperm morphology, and several explanations have been presented to account for this diversity. Less is known about variation in sperm physiology and cellular processes that can give sperm cells an advantage when competing to fertilize oocytes. Capacitation of spermatozoa, a process essential for mammalian fertilization, correlates with changes in motility that result in a characteristic swimming pattern known as hyperactivation. Previous studies revealed that sperm motility and velocity depend on the amount of ATP available and, therefore, changes in sperm movement occurring during capacitation and hyperactivation may involve changes in sperm bioenergetics. Here, we examine differences in ATP levels of sperm from three mouse species (genus Mus), differing in sperm competition levels, incubated under non-capacitating and capacitating conditions, to analyse relationships between energetics, capacitation, and swimming patterns. We found that, in general terms, the amount of sperm ATP decreased more rapidly under capacitating conditions. This descent was related to the development of a hyperactivated pattern of movement in two species (M. musculus and M. spicilegus) but not in the other (M. spretus), suggesting that, in the latter, temporal dynamics and energetic demands of capacitation and hyperactivation may be decoupled or that the hyperactivation pattern differs. The decrease in ATP levels during capacitation was steeper in species with higher levels of sperm competition than in those with lower levels. Our results suggest that, during capacitation, sperm consume more ATP than under non-capacitating conditions. This higher ATP consumption may be linked to higher velocity and lateral head displacement, which are associated with hyperactivated motility.


Author(s):  
Miguel Ricardo Leung ◽  
Ravi Teja Ravi ◽  
Bart M. Gadella ◽  
Tzviya Zeev-Ben-Mordehai

To become fertilization-competent, mammalian sperm must undergo a complex series of biochemical and morphological changes in the female reproductive tract. These changes, collectively called capacitation, culminate in the exocytosis of the acrosome, a large vesicle overlying the nucleus. Acrosomal exocytosis is not an all-or-nothing event but rather a regulated process in which vesicle cargo disperses gradually. However, the structural mechanisms underlying this controlled release remain undefined. In addition, unlike other exocytotic events, fusing membranes are shed as vesicles; the cell thus loses the entire anterior two-thirds of its plasma membrane and yet remains intact, while the remaining nonvesiculated plasma membrane becomes fusogenic. Precisely how cell integrity is maintained throughout this drastic vesiculation process is unclear, as is how it ultimately leads to the acquisition of fusion competence. Here, we use cryoelectron tomography to visualize these processes in unfixed, unstained, fully hydrated sperm. We show that paracrystalline structures within the acrosome disassemble during capacitation and acrosomal exocytosis, representing a plausible mechanism for gradual dispersal of the acrosomal matrix. We find that the architecture of the sperm head supports an atypical membrane fission–fusion pathway that maintains cell integrity. Finally, we detail how the acrosome reaction transforms both the micron-scale topography and the nanoscale protein landscape of the sperm surface, thus priming the sperm for fertilization.


Cryobiology ◽  
2021 ◽  
Vol 103 ◽  
pp. 181-182
Author(s):  
Ariadna Delgado-Bermúdez ◽  
Yentel Mateo-Otero ◽  
Marc Llavanera ◽  
Sergi Bonet ◽  
Marc Yeste ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 12646
Author(s):  
Marc Yeste ◽  
Sandra Recuero ◽  
Carolina Maside ◽  
Albert Salas-Huetos ◽  
Sergi Bonet ◽  
...  

Few data exist about the presence and physiological role of Na+/H+ exchangers (NHEs) in the plasma membrane of mammalian sperm. In addition, the involvement of these channels in the ability of sperm to undergo capacitation and acrosomal reaction has not been investigated in any mammalian species. In the present study, we addressed whether these channels are implicated in these two sperm events using the pig as a model. We also confirmed the presence of NHE1 channels in the plasma membrane of ejaculated sperm by immunofluorescence and immunoblotting. The function of NHE channels during in vitro capacitation was analyzed by incubating sperm samples in capacitating medium for 300 min in the absence or presence of a specific blocker (DMA; 5-(N,N-dimethyl)-amiloride) at different concentrations (1, 5, and 10 µM); acrosome exocytosis was triggered by adding progesterone after 240 min of incubation. Sperm motility and kinematics, integrity of plasma and acrosome membranes, membrane lipid disorder, intracellular calcium and reactive oxygen species (ROS) levels, and mitochondrial membrane potential (MMP) were evaluated after 0, 60, 120, 180, 240, 250, 270, and 300 min of incubation. NHE1 localized in the connecting and terminal pieces of the flagellum and in the equatorial region of the sperm head and was found to have a molecular weight of 75 kDa. During the first 240 min of incubation, i.e., before the addition of progesterone, blocked and control samples did not differ significantly in any of the parameters analyzed. However, from 250 min of incubation, samples treated with DMA showed significant alterations in total motility and the amplitude of lateral head displacement (ALH), acrosomal integrity, membrane lipid disorder, and MMP. In conclusion, while NHE channels are not involved in the sperm ability to undergo capacitation, they could be essential for triggering acrosome exocytosis and hypermotility after progesterone stimulus.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0245816
Author(s):  
Alejandro Aguado-García ◽  
Daniel A. Priego-Espinosa ◽  
Andrés Aldana ◽  
Alberto Darszon ◽  
Gustavo Martínez-Mekler

Capacitation is a complex maturation process mammalian sperm must undergo in the female genital tract to be able to fertilize an egg. This process involves, amongst others, physiological changes in flagellar beating pattern, membrane potential, intracellular ion concentrations and protein phosphorylation. Typically, in a capacitation medium, only a fraction of sperm achieve this state. The cause for this heterogeneous response is still not well understood and remains an open question. Here, one of our principal results is to develop a discrete regulatory network, with mostly deterministic dynamics in conjunction with some stochastic elements, for the main biochemical and biophysical processes involved in the early events of capacitation. The model criterion for capacitation requires the convergence of specific levels of a select set of nodes. Besides reproducing several experimental results and providing some insight on the network interrelations, the main contribution of the model is the suggestion that the degree of variability in the total amount and individual number of ion transporters among spermatozoa regulates the fraction of capacitated spermatozoa. This conclusion is consistent with recently reported experimental results. Based on this mathematical analysis, experimental clues are proposed for the control of capacitation levels. Furthermore, cooperative and interference traits that become apparent in the modelling among some components also call for future theoretical and experimental studies.


2021 ◽  
Vol 118 (45) ◽  
pp. e2110996118
Author(s):  
Miguel Ricardo Leung ◽  
Riccardo Zenezini Chiozzi ◽  
Marc C. Roelofs ◽  
Johannes F. Hevler ◽  
Ravi Teja Ravi ◽  
...  

Mitochondria–cytoskeleton interactions modulate cellular physiology by regulating mitochondrial transport, positioning, and immobilization. However, there is very little structural information defining mitochondria–cytoskeleton interfaces in any cell type. Here, we use cryofocused ion beam milling-enabled cryoelectron tomography to image mammalian sperm, where mitochondria wrap around the flagellar cytoskeleton. We find that mitochondria are tethered to their neighbors through intermitochondrial linkers and are anchored to the cytoskeleton through ordered arrays on the outer mitochondrial membrane. We use subtomogram averaging to resolve in-cell structures of these arrays from three mammalian species, revealing they are conserved across species despite variations in mitochondrial dimensions and cristae organization. We find that the arrays consist of boat-shaped particles anchored on a network of membrane pores whose arrangement and dimensions are consistent with voltage-dependent anion channels. Proteomics and in-cell cross-linking mass spectrometry suggest that the conserved arrays are composed of glycerol kinase-like proteins. Ordered supramolecular assemblies may serve to stabilize similar contact sites in other cell types in which mitochondria need to be immobilized in specific subcellular environments, such as in muscles and neurons.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lucia Carichino ◽  
Derek Drumm ◽  
Sarah D. Olson

Although hydrodynamic interactions and cooperative swimming of mammalian sperm are observed, the key factors that lead to attraction or repulsion in different confined geometries are not well understood. In this study, we simulate the 3-dimensional fluid-structure interaction of pairs of swimmers utilizing the Method of Regularized Stokeslets, accounting for a nearby wall via a regularized image system. To investigate emergent trajectories of swimmers, we look at different preferred beat forms, planar or quasi-planar (helical with unequal radii). We also explored different initializations of swimmers in either the same plane (co-planar) or with centerlines in parallel planes. In free space, swimmers with quasi-planar beat forms and those with planar beat forms that are co-planar exhibit stable attraction. The swimmers reach a maintained minimum distance apart that is smaller than their initial distance apart. In contrast, for swimmers initialized in parallel beat planes with a planar beat form, we observe alternating periods of attraction and repulsion. When the pairs of swimmers are perpendicular to a nearby wall, for all cases considered, they approach the wall and reach a constant distance between swimmers. Interestingly, we observe sperm rolling in the case of swimmers with preferred planar beat forms that are initialized in parallel beat planes and near a wall.


2021 ◽  
Vol 118 (44) ◽  
pp. e2107500118
Author(s):  
Meisam Zaferani ◽  
Susan S. Suarez ◽  
Alireza Abbaspourrad

Mammalian sperm migration within the complex and dynamic environment of the female reproductive tract toward the fertilization site requires navigational mechanisms, through which sperm respond to the tract environment and maintain the appropriate swimming behavior. In the oviduct (fallopian tube), sperm undergo a process called “hyperactivation,” which involves switching from a nearly symmetrical, low-amplitude, and flagellar beating pattern to an asymmetrical, high-amplitude beating pattern that is required for fertilization in vivo. Here, exploring bovine sperm motion in high–aspect ratio microfluidic reservoirs as well as theoretical and computational modeling, we demonstrate that sperm hyperactivation, in response to pharmacological agonists, modulates sperm–sidewall interactions and thus navigation via physical boundaries. Prior to hyperactivation, sperm remained swimming along the sidewalls of the reservoirs; however, once hyperactivation caused the intrinsic curvature of sperm to exceed a critical value, swimming along the sidewalls was reduced. We further studied the effect of noise in the intrinsic curvature near the critical value and found that these nonthermal fluctuations yielded an interesting “Run–Stop” motion on the sidewall. Finally, we observed that hyperactivation produced a “pseudo-chemotaxis” behavior, in that sperm stayed longer within microfluidic chambers containing higher concentrations of hyperactivation agonists.


Sign in / Sign up

Export Citation Format

Share Document