Quantitative Analysis of the Inactivation of Photosynthetic Oxygen Evolution and the Release of Polypeptides and Manganese in the Photosystem II Particles of Spinach Chloroplasts

1983 ◽  
Vol 24 (4) ◽  
pp. 741-747 ◽  
Author(s):  
Tomohiko Kuwabara ◽  
Norio Murata
2007 ◽  
Vol 833 (1-3) ◽  
pp. 169-174 ◽  
Author(s):  
R. Beauchemin ◽  
J. Harnois ◽  
R. Rouillon ◽  
H.A. Tajmir-Riahi ◽  
R. Carpentier

1997 ◽  
Vol 52 (3-4) ◽  
pp. 175-179 ◽  
Author(s):  
W. I. Gruszecki ◽  
K. Strzałka ◽  
A. Radunz ◽  
G. H. Schmid

Abstract Photosynthetic oxygen evolution from photosystem II particles was analyzed as consequence of a train of short (5 μs) flashes of different light quality and different intensities to study cyclic electron flow around photosystem II. Damped oscillations of the amplitudes of O2-evolution corresponding to a flash sequence were fitted numerically and analyzed in terms of a nonhomogeneous distribution of misses, represented by the probability parameter αi. Application of red light, known to promote cyclic electron flow around photosystem II (Gruszecki et al., 1995) results in a considerable increase of all αi, indicating that at the molecular level the misses may be interpreted as resulting from a competition for the reduction of oxidized P680 between cyclic electron flow and the electron flow coming from the water splitting enzyme. In accordance with previous findings, application of light flashes of the spectrum covering the absorption region of carotenoids resulted in an inhibition of cyclic electron flow and a pronounced decrease of the level of the miss parameter. Possible molecular mechanisms for the activity control of this cyclic electron transport around photosystem II by carotenoids are discussed.


Sign in / Sign up

Export Citation Format

Share Document