scholarly journals High-mass star formation in Orion B triggered by cloud–cloud collision: Merging molecular clouds in NGC 2024

Author(s):  
Rei Enokiya ◽  
Akio Ohama ◽  
Rin Yamada ◽  
Hidetoshi Sano ◽  
Shinji Fujita ◽  
...  

Abstract We performed new comprehensive 13CO(J = 2–1) observations toward NGC 2024, the most active star-forming region in Orion B, with an angular resolution of ∼100″ obtained with Nanten2. We found that the associated cloud consists of two independent velocity components. The components are physically connected to the H ii region as evidenced by their close correlation with the dark lanes and the emission nebulosity. The two components show complementary distribution with a displacement of ∼0.6 pc. Such complementary distribution is typical to colliding clouds discovered in regions of high-mass star formation. We hypothesize that a cloud–cloud collision between the two components triggered the formation of the late O-type stars and early B stars localized within 0.3 pc of the cloud peak. The duration time of the collision is estimated to be 0.3 million years from a ratio of the displacement and the relative velocity ∼3 km s−1 corrected for probable projection. The high column density of the colliding cloud ∼1023 cm−2 is similar to those in the other high-mass star clusters in RCW 38, Westerlund 2, NGC 3603, and M 42, which are likely formed under trigger by cloud–cloud collision. The present results provide an additional piece of evidence favorable to high-mass star formation by a major cloud–cloud collision in Orion.

2019 ◽  
Vol 71 (Supplement_1) ◽  
Author(s):  
Fumitaka Nakamura ◽  
Shun Ishii ◽  
Kazuhito Dobashi ◽  
Tomomi Shimoikura ◽  
Yoshito Shimajiri ◽  
...  

Abstract We carried out mapping observations toward three nearby molecular clouds, Orion A, Aquila Rift, and M 17, using a new 100 GHz receiver, FOREST, on the Nobeyama 45 m telescope. We describe the details of the data obtained such as intensity calibration, data sensitivity, angular resolution, and velocity resolution. Each target contains at least one high-mass star-forming region. The target molecular lines were 12CO (J = 1–0), 13CO (J = 1–0), C18O (J = 1–0), N2H+ (J = 1–0), and CCS (JN = 87–76), with which we covered the density range of 102 cm−3 to 106 cm−3 with an angular resolution of ∼20″ and a velocity resolution of ∼0.1 km s−1. Assuming the representative distances of 414 pc, 436 pc, and 2.1 kpc, the maps of Orion A, Aquila Rift, and M17 cover most of the densest parts with areas of about 7 pc × 15 pc, 7 pc × 7 pc, and 36 pc × 18 pc, respectively. On the basis of the 13CO column density distribution, the total molecular masses are derived to be $3.86 \times 10^{4}\, M_\odot$, $2.67 \times 10^{4}\, M_{\odot }$, and $8.1\times 10^{5}\, M_{\odot }$ for Orion A, Aquila Rift, and M17, respectively. For all the clouds, the H2 column density exceeds the theoretical threshold for high-mass star formation of ≳ 1 g cm−2 only toward the regions which contain current high-mass star-forming sites. For other areas, further mass accretion or dynamical compression would be necessary for future high-mass star formation. This is consistent with the current star formation activity. Using the 12CO data, we demonstrate that our data have enough capability to identify molecular outflows, and for the Aquila Rift we identify four new outflow candidates. The scientific results will be discussed in detail in separate papers.


2018 ◽  
Vol 617 ◽  
pp. A100 ◽  
Author(s):  
H. Beuther ◽  
J. C. Mottram ◽  
A. Ahmadi ◽  
F. Bosco ◽  
H. Linz ◽  
...  

Context. High-mass stars form in clusters, but neither the early fragmentation processes nor the detailed physical processes leading to the most massive stars are well understood. Aims. We aim to understand the fragmentation, as well as the disk formation, outflow generation, and chemical processes during high-mass star formation on spatial scales of individual cores. Methods. Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30 m telescope, we have observed in the IRAM large program CORE the 1.37 mm continuum and spectral line emission at high angular resolution (~0.4″) for a sample of 20 well-known high-mass star-forming regions with distances below 5.5 kpc and luminosities larger than 104 L⊙. Results. We present the overall survey scope, the selected sample, the observational setup, and the main goals of CORE. Scientifically, we concentrated on the mm continuum emission on scales on the order of 1000 AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented vs. singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths. Conclusions. A large sample of high-mass star-forming regions at high spatial resolution allows us to study the fragmentation properties of young cluster-forming regions. The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation.


Author(s):  
A J Rigby ◽  
N Peretto ◽  
R Adam ◽  
P Ade ◽  
M Anderson ◽  
...  

Abstract Determining the mechanism by which high-mass stars are formed is essential for our understanding of the energy budget and chemical evolution of galaxies. By using the New IRAM KIDs Array 2 (NIKA2) camera on the Institut de Radio Astronomie Millimétrique (IRAM) 30-m telescope, we have conducted high-sensitivity and large-scale mapping of a fraction of the Galactic plane in order to search for signatures of the transition between the high- and low-mass star-forming modes. Here, we present the first results from the Galactic Star Formation with NIKA2 (GASTON) project, a Large Programme at the IRAM 30-m telescope which is mapping ≈2 deg2 of the inner Galactic plane (GP), centred on ℓ = 23${_{.}^{\circ}}$9, b = 0${_{.}^{\circ}}$05, as well as targets in Taurus and Ophiuchus in 1.15 and 2.00 mm continuum wavebands. In this paper we present the first of the GASTON GP data taken, and present initial science results. We conduct an extraction of structures from the 1.15 mm maps using a dendrogram analysis and, by comparison to the compact source catalogues from Herschel survey data, we identify a population of 321 previously-undetected clumps. Approximately 80 per cent of these new clumps are 70 μm-quiet, and may be considered as starless candidates. We find that this new population of clumps are less massive and cooler, on average, than clumps that have already been identified. Further, by classifying the full sample of clumps based upon their infrared-bright fraction – an indicator of evolutionary stage – we find evidence for clump mass growth, supporting models of clump-fed high-mass star formation.


2020 ◽  
Vol 644 ◽  
pp. A34
Author(s):  
G. Sabatini ◽  
S. Bovino ◽  
A. Giannetti ◽  
F. Wyrowski ◽  
M. A. Órdenes ◽  
...  

Context. Deuteration has been suggested to be a reliable chemical clock of star-forming regions due to its strong dependence on density and temperature changes during cloud contraction. In particular, the H3+ isotopologues (e.g. ortho-H2D+) seem to act as good proxies of the evolutionary stages of the star formation process. While this has been widely explored in low-mass star-forming regions, in the high-mass counterparts only a few studies have been pursued, and the reliability of deuteration as a chemical clock remains inconclusive. Aims. We present a large sample of o-H2D+ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through different evolutionary stages. Methods. APEX observations of the ground-state transition of o-H2D+ were analysed in a large sample of high-mass clumps selected from the ATLASGAL survey at different evolutionary stages. Column densities and beam-averaged abundances of o-H2D+ with respect to H2, X(o-H2D+), were obtained by modelling the spectra under the assumption of local thermodynamic equilibrium. Results. We detect 16 sources in o-H2D+ and find clear correlations between X(o-H2D+) and the clump bolometric luminosity and the dust temperature, while only a mild correlation is found with the CO-depletion factor. In addition, we see a clear correlation with the luminosity-to-mass ratio, which is known to trace the evolution of the star formation process. This would indicate that the deuterated forms of H3+ are more abundant in the very early stages of the star formation process and that deuteration is influenced by the time evolution of the clumps. In this respect, our findings would suggest that the X(o-H2D+) abundance is mainly affected by the thermal changes rather than density changes in the gas. We have employed these findings together with observations of H13CO+, DCO+, and C17O to provide an estimate of the cosmic-ray ionisation rate in a sub-sample of eight clumps based on recent analytical work. Conclusions. Our study presents the largest sample of o-H2D+ in star-forming regions to date. The results confirm that the deuteration process is strongly affected by temperature and suggests that o-H2D+ can be considered a reliable chemical clock during the star formation processes, as proved by its strong temporal dependence.


Author(s):  
Katsuhiro Hayashi ◽  
Satoshi Yoshiike ◽  
Rei Enokiya ◽  
Shinji Fujita ◽  
Rin Yamada ◽  
...  

Abstract We report on a study of the high-mass star formation in the H ii region W 28 A2 by investigating the molecular clouds that extend over ∼5–10 pc from the exciting stars using the 12CO and 13CO (J = 1–0) and 12CO (J = 2–1) data taken by NANTEN2 and Mopra observations. These molecular clouds consist of three velocity components with CO intensity peaks at VLSR ∼ −4 km s−1, 9 km s−1, and 16 km s−1. The highest CO intensity is detected at VLSR ∼ 9 km s−1, where the high-mass stars with spectral types O6.5–B0.5 are embedded. We found bridging features connecting these clouds toward the directions of the exciting sources. Comparisons of the gas distributions with the radio continuum emission and 8 μm infrared emission show spatial coincidence/anti-coincidence, suggesting physical associations between the gas and the exciting sources. The 12CO J = 2–1 to 1–0 intensity ratio shows a high value (≳0.8) toward the exciting sources for the −4 km s−1 and +9 km s−1 clouds, possibly due to heating by the high-mass stars, whereas the intensity ratio at the CO intensity peak (VLSR ∼ 9 km s−1) decreases to ∼0.6, suggesting self absorption by the dense gas in the near side of the +9 km s−1 cloud. We found partly complementary gas distributions between the −4 km s−1 and +9 km s−1 clouds, and the −4 km s−1 and +16 km s−1 clouds. The exciting sources are located toward the overlapping region in the −4 km s−1 and +9 km s−1 clouds. Similar gas properties are found in the Galactic massive star clusters RCW 38 and NGC 6334, where an early stage of cloud collision to trigger the star formation is suggested. Based on these results, we discuss the possibility of the formation of high-mass stars in the W 28 A2 region being triggered by cloud–cloud collision.


2020 ◽  
Vol 497 (4) ◽  
pp. 5454-5472
Author(s):  
Namitha Issac ◽  
Anandmayee Tej ◽  
Tie Liu ◽  
Watson Varricatt ◽  
Sarita Vig ◽  
...  

ABSTRACT A multiwavelength analysis of star formation associated with the extended green object, G19.88-0.53 is presented in this paper. With multiple detected radio and millimetre components, G19.88-0.53 unveils as harbouring a protocluster rather than a single massive young stellar object. We detect an ionized thermal jet using the upgraded Giant Meterwave Radio Telescope, India, which is found to be associated with a massive, dense and hot ALMA 2.7 mm core driving a bipolar CO outflow. Near-infrared spectroscopy with UKIRT–UIST shows the presence of multiple shock-excited H2 lines concurrent with the nature of this region. Detailed investigation of the gas kinematics using ALMA data reveals G19.88-0.53 as an active protocluster with high-mass star-forming components spanning a wide evolutionary spectrum from hot cores in accretion phase to cores driving multiple outflows to possible UCH ii regions.


Author(s):  
Atsushi Nishimura ◽  
Shinji Fujita ◽  
Mikito Kohno ◽  
Daichi Tsutsumi ◽  
Tetsuhiro Minamidani ◽  
...  

Abstract M 16, the Eagle Nebula, is an outstanding H ii region which exhibits extensive high-mass star formation and hosts remarkable “pillars.” We herein obtained new 12COJ = 1–0 data for the region observed with NANTEN2, which were combined with the 12COJ = 1–0 data obtained using the FOREST unbiased galactic plane imaging with Nobeyama 45 m telescope (FUGIN) survey. These observations revealed that a giant molecular cloud (GMC) of ∼1.3 × 105 M⊙ is associated with M 16, which extends for 30 pc perpendicularly to the galactic plane, at a distance of 1.8 kpc. This GMC can be divided into the northern (N) cloud, the eastern (E) filament, the southeastern (SE) cloud, the southeastern (SE) filament, and the southern (S) cloud. We also found two velocity components (blueshifted and redshifted components) in the N cloud. The blueshifted component shows a ring-like structure, and the redshifted one coincides with the intensity depression of the ring-like structure. The position–velocity diagram of the components showed a V-shaped velocity feature. The spatial and velocity structures of the cloud indicated that two different velocity components collided with each other at a relative velocity of 11.6 km s−1. The timescale of the collision was estimated to be ∼4 × 105 yr. The collision event reasonably explains the formation of the O9V star ALS 15348, as well as the shape of the Spitzer bubble N19. A similar velocity structure was found in the SE cloud, which is associated with the O7.5V star HD 168504. In addition, the complementary distributions of the two velocity components found in the entire GMC suggested that the collision event occurred globally. On the basis of the above results, we herein propose a hypothesis that the collision between the two components occurred sequentially over the last several 106 yr and triggered the formation of O-type stars in the NGC 6611 cluster in M 16.


2009 ◽  
Vol 695 (2) ◽  
pp. 1399-1412 ◽  
Author(s):  
Ya-Wen Tang ◽  
Paul T. P. Ho ◽  
Josep Miquel Girart ◽  
Ramprasad Rao ◽  
Patrick Koch ◽  
...  

2002 ◽  
Vol 12 ◽  
pp. 146-148
Author(s):  
Ewine F. van Dishoeck ◽  
Floris F.S. van der Tak

AbstractRecent chemical studies of high-mass star-forming regions at submillimeter and infrared wavelengths reveal large variations in the abundances depending on evolutionary state. Such variations can be explained by freezing out of molecules onto grains in the cold collapse phase, followed by evaporation and high-temperature chemical reactions when the young star heats the envelope. Thus, the chemical composition can be a powerful diagnostic tool. A detailed study of a set of infrared-bright massive young stars reveals systematic increases in the gas/solid ratios and abundances of evaporated molecules with temperature. This ‘global heating’ plausibly results from the gradual dispersion of the envelopes. We argue that these objects form the earliest phase of massive star formation, before the ‘hot core’ and ultracompact H II region phase.


Sign in / Sign up

Export Citation Format

Share Document