Advances in Chemical Priming to Enhance Abiotic Stress Tolerance in Plants

Author(s):  
Kaori Sako ◽  
Huong Mai Nguyen ◽  
Motoaki Seki

  Abiotic stress is considered a major factor limiting crop yield and quality. The development of effective strategies that mitigate abiotic stress is essential for sustainable agriculture and food security, especially with continuing global population growth. Recent studies have demonstrated that exogenous treatment of plants with chemical compounds can enhance abiotic stress tolerance by inducing molecular and physiological defense mechanisms, a process known as chemical priming. Chemical priming is believed to represent a promising strategy for mitigating abiotic stress in crop plants. Plants biosynthesize various compounds, such as phytohormones and other metabolites, to adapt to adverse environments. Research on artificially synthesized compounds has also resulted in the identification of novel compounds that improve abiotic stress tolerance. In this review, we summarize current knowledge of both naturally synthesized and artificial priming agents that have been shown to increase the abiotic stress tolerance of plants.

2020 ◽  
Vol 11 ◽  
Author(s):  
Luísa Carvalho ◽  
Elsa Gonçalves ◽  
Sara Amâncio ◽  
Antero Martins

High temperatures and extreme drought are increasingly more frequent in Portugal, which represents a strong threat to viticulture in certain regions of the country. These multifactorial abiotic stresses are threatening viticultural areas worldwide, and the problem can hardly be overcome only by changing cultural practices. This scenario has raised a major challenge for plant scientists to find ways to adapt existing varieties to the new conditions without loss of their characteristic flavors, yield, and associated varietal character of wines. Aragonez (syn. Tempranillo) is one such variety, widely cultivated in Portugal and Spain, with specific characteristics associated with terroir. In this context, insight into intravarietal variability to enable its exploitation for selection becomes an important tool to mitigate the effect of multifactorial stresses driven by climate changes. The present work describes an innovative selection approach: selection for abiotic stress tolerance, measured by the leaf temperature of clones under environmental conditions of drought and extreme heat. This evaluation was complemented with values of yield and quality characteristics of the must (pH, acidity, °Brix, and anthocyanins). The application of this methodology was done in an experimental population of 255 clones of Tempranillo for 3 years. The genotypes were then ranked according to their level of tolerance to abiotic stress without loss of yield/quality. To understand the differences at the transcription level that could account for such variability, several of the most tolerant and most sensitive genotypes were analyzed for key genes using reverse transcriptase–quantitative polymerase chain reaction. The results enabled the selection of a group of genotypes with increased tolerance to stress, in relation to the average of the variety, which maintained the typical must quality of Aragonez. In parallel, several transcripts previously acknowledged as markers for abiotic stress tolerance were identified in several clones and are possible targets for plant breeding and genetic modification and/or to develop screening procedures to select genotypes better adapted to the abiotic stress driven by climate change.


2018 ◽  
pp. 51-79 ◽  
Author(s):  
Muhammad Arslan Ashraf ◽  
Ali Akbar ◽  
Sajjad Hassan Askari ◽  
Muhammad Iqbal ◽  
Rizwan Rasheed ◽  
...  

2021 ◽  

Abstract This book contains 29 chapters focusing on wheat, maize and sorghum molecular breeding. It aims to contribute the latest understandings of the molecular and genetic bases of abiotic stress tolerance, yield and quality improvement of wheat, maize and sorghum to develop strategies for improving abiotic stress tolerance that will lead to enhance productivity and better utilization of natural resources to ensure food security through modern breeding.


Author(s):  
Mirza Hasanuzzaman ◽  
Md. Shahadat Hossain ◽  
M. H. M. Borhannuddin Bhuyan ◽  
Jubayer Al Mahmud ◽  
Kamrun Nahar ◽  
...  

2018 ◽  
Vol 34 (2) ◽  
pp. 259-265 ◽  
Author(s):  
Hemant B Kardile ◽  
◽  
Vikrant ◽  
Nirmal Kant Sharma ◽  
Ankita Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document