scholarly journals Alternative Oxidase Involvement in Cold Stress Response of Arabidopsis thaliana fad2 and FAD3+ Cell Suspensions Altered in Membrane Lipid Composition

2007 ◽  
Vol 48 (6) ◽  
pp. 856-865 ◽  
Author(s):  
Ana Rita Matos ◽  
Cécile Hourton-Cabassa ◽  
Dominique Ciçek ◽  
Nathalie Rezé ◽  
Joao Daniel Arrabaça ◽  
...  
Author(s):  
Juan de Dios Barajas-Lopez ◽  
Arjun Tiwari ◽  
Xavier Zarza ◽  
Molly W Shaw ◽  
Jesús Pascual ◽  
...  

  Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions, including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids and was associated with membranes. Lipid components and cold-induced reduction in PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with the modification in membrane lipid composition.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Nicole J. Bale ◽  
Marton Palatinszky ◽  
W. Irene C. Rijpstra ◽  
Craig W. Herbold ◽  
Michael Wagner ◽  
...  

ABSTRACT “Candidatus Nitrosotenuis uzonensis” is the only cultured moderately thermophilic member of the thaumarchaeotal order Nitrosopumilales (NP) that contains many mesophilic marine strains. We examined its membrane lipid composition at different growth temperatures (37°C, 46°C, and 50°C). Its lipids were all membrane-spanning glycerol dialkyl glycerol tetraethers (GDGTs), with 0 to 4 cyclopentane moieties. Crenarchaeol (cren), the characteristic thaumarchaeotal GDGT, and its isomer (crenʹ) were present in high abundance (30 to 70%). The GDGT polar headgroups were mono-, di-, and trihexoses and hexose/phosphohexose. The ratio of glycolipid to phospholipid GDGTs was highest in the cultures grown at 50°C. With increasing growth temperatures, the relative contributions of cren and crenʹ increased, while those of GDGT-0 to GDGT-4 (including isomers) decreased. TEX86 (tetraether index of tetraethers consisting of 86 carbons)-derived temperatures were much lower than the actual growth temperatures, further demonstrating that TEX86 does not accurately reflect the membrane lipid adaptation of thermophilic Thaumarchaeota. As the temperature increased, specific GDGTs changed relative to their isomers, possibly representing temperature adaption-induced changes in cyclopentane ring stereochemistry. Comparison of a wide range of thaumarchaeotal core lipid compositions revealed that the “Ca. Nitrosotenuis uzonensis” cultures clustered separately from other members of the NP order and the Nitrososphaerales (NS) order. While phylogeny generally seems to have a strong influence on GDGT distribution, our analysis of “Ca. Nitrosotenuis uzonensis” demonstrates that its terrestrial, higher-temperature niche has led to a lipid composition that clearly differentiates it from other NP members and that this difference is mostly driven by its high crenʹ content. IMPORTANCE For Thaumarchaeota, the ratio of their glycerol dialkyl glycerol tetraether (GDGT) lipids depends on growth temperature, a premise that forms the basis of the widely applied TEX86 paleotemperature proxy. A thorough understanding of which GDGTs are produced by which Thaumarchaeota and what the effect of temperature is on their GDGT composition is essential for constraining the TEX86 proxy. “Ca. Nitrosotenuis uzonensis” is a moderately thermophilic thaumarchaeote enriched from a thermal spring, setting it apart in its environmental niche from the other marine mesophilic members of its order. Indeed, we found that the GDGT composition of “Ca. Nitrosotenuis uzonensis” cultures was distinct from those of other members of its order and was more similar to those of other thermophilic, terrestrial Thaumarchaeota. This suggests that while phylogeny has a strong influence on GDGT distribution, the environmental niche that a thaumarchaeote inhabits also shapes its GDGT composition.


Sign in / Sign up

Export Citation Format

Share Document