scholarly journals Formation of chromitite seams and associated anorthosites in layered intrusion by reactive volatile-rich fluid infiltration

Author(s):  
Jennifer S Marsh ◽  
Michael J Pasecznyk ◽  
Alan E Boudreau

Abstract Drilling related to development of the platinum-group element deposit of the J-M Reef of the Stillwater Complex returned samples of a rare chromitite seam between anorthosite and norite in a discordant anorthositic body. Plagioclase core An concentrations are marginally higher and modestly reversely zoned on the norite side (average Ancore = 83.8; average Ancore-Anrim = -1.1) as compared with the anorthosite side (Average Ancore 82.5; Average Ancore-Anrim = +1.0). The anorthosites are also characterized by a slightly smaller average plagioclase grain size than plagioclase in the norite (1.41 mm and 1.54 mm, respectively). The chromite can contain single and polyphase inclusions of orthopyroxene, plagioclase, amphibole, biotite and Cl-rich apatite. These and other compositional and textural features, as well as inference from other discordant anorthositic bodies in the Banded series, are all consistent with a chromatographic model of chromite precipitation at a reaction front as a norite protolith reacts with a Cl-rich aqueous fluid saturated in plagioclase alone. Chromitite seam formation is modeled using an infiltration metasomatic model, in which a fluid becomes progressively undersaturated in pyroxene as it rises into the hotter part of the crystal pile. As this pyroxene-undersaturated fluid moves through a noritic protolith, it dissolves the Cr-bearing orthopyroxene to produce an anorthosite. Chromite precipitates at the reaction front between the anorthosite and the norite owing to liberation of Mg and Cr from pyroxene. Continuous redissolution and reprecipitation of chromite occurs as the pyroxene dissolution front moves in direction of fluid flow, collecting the Cr lost from the anorthosite. Owing to Cr dissolved mainly as a neutral divalent cation complex, (CrCl(OH)0, in the solution, but incorporated as a trivalent cation in chromite, the required redox reaction can involve concurrent precipitation of sulfide with chromite. This mechanism differs from some recent models in that the anorthosites are themselves replacement bodies and are not original precipitates from a magma nor formed by loss of mafic material by partial melting. The results show the need for experimental mineral solubility data at T and P conditions appropriate to upper crustal mafic/ultramafic intrusions.

2021 ◽  
Author(s):  
Astin Nurdiana ◽  
Atsushi Okamoto ◽  
Masaoki Uno ◽  
Noriyoshi Tsuchiya

<p>Replacement of feldspars occurs ubiquitously during fluid-rock interaction in crusts, and the formation of micro- to nano- pores along with the replacement potentially provides significant impacts on hydrological properties within the crust (e.g. Plümper et al., 2017; Yuguchi et al., 2019). In this contribution, we report the novel texture of the plagioclase replacement by K-feldspar and albite and showed the conditions of such replacement. The mafic schists near the pegmatitic quartz diorite within the Kinkasan Island, NE Japan show extensive feldspar alteration at various stages, involving Na-rich and K-rich fluids, respectively. Interestingly, during the later K-rich fluid infiltration at 400-570 ˚C at 0.3–0.45 GPa, plagioclase (An35-60) was replaced by K-feldspar (An0Ab1Or99) and albite (An4Ab94Or2) intergrowth, meaning that simultaneous K-feldspathization and albitization, and nano- to microscale pore network developed preferentially along with albite, resulting in an increase of the bulk rock porosity up to 1.34±0.14%.</p><p>To understand the relationship between K-feldspar and albite formations within the same plagioclase grain, we conducted the hydrothermal experiments on the feldspar replacement by using different pairs of starting minerals (anorthite, An96Ab4; labradorite, An66Ab33Or1; albite, An1Ab99) and fluid compositions (2M KCl and/or NaCl aqueous solutions) for 4-8 days. AIn all runs, the replacement processes of feldspars developed the distinct reaction front and pores formation close to the reaction front with porosity up to ~7%. In the experiments with KCl solution, the reaction front migrated twice faster than those with the mixture of KCl and NaCl. The most intense replacement occurred in the run of Labradorite-KCl solution, where large cavities were formed in the center of the labradorite grain with developing albite exsolution, and homogenous rim of K-feldspar precipitation. Such occurrences are similar to the replacement texture observed in the mafic schist within the Kinkasan Island and suggest the preferential removal of Ca and the fixed Na during K-feldspar formation. Our experimental results indicate the primary controls of the fluid composition on the replacement texture, pore formation, and the reaction rate.</p><p>Keywords feldspar replacement, micropores, fluid transport, hydrothermal experiment, Kinkasan</p>


2021 ◽  
Vol 59 (6) ◽  
pp. 1711-1730
Author(s):  
Louis J. Cabri ◽  
Viktor V. Subbotin

ABSTRACT Drill-core samples from the basal Cu-Ni-platinum-group element mineralization of the Early Proterozoic Fedorova Tundra intrusion in the Fedorova-Pana layered intrusion, central Kola Peninsula, Russia, were studied in two separate projects in Canada and Russia. In Canada, trace precious metal analyses by laser ablation inductively coupled mass spectrometry of 323 base metal sulfide particles [pentlandite (101), pyrrhotite (98), chalcopyrite (25), and pyrite (99)] show that Pd is highly concentrated in pentlandite. Most of the analyses (71%) were done using two master composite samples of comminuted drill core representative of the West Pit and East Pit mineralization, FWMC and FEMC, respectively. Fewer analyses were made of three other comminuted drill core samples from the West Pit referred to as “lithology” samples: OLFW (olivine-bearing rocks), ANFW (leucocratic rocks), and GNFW (gabbronorite). In Russia, 120 polished sections sliced from drill core from the West and East Pits and from four other Fedorova Tundra intrusion deposits (Kievey, Northern Kamennik, Eastern Chuarvy, and Southern Kievey) were studied mineralogically. Platinum group mineral characterization and trace Pd electron probe microanalyses of pentlandite were done using polished sections from all six locations (n = 95). The trace electron probe microanalysis data for Pd in pentlandite from the West (n = 35) and East (n = 19) Pit samples, though at much higher detection levels, are considered to be comparable to the laser ablation inductively coupled mass spectrometry data. The Eastern Chuarvy samples show particularly high Pd concentrations averaging 0.49 wt.% Pd (n = 11) and as high as 1.64 wt.% Pd. The combined data from these studies guides our estimate that pentlandite accounts for 30 to 50% of the Pd in these ores and that Rh solid solution in sulfides may account for >98% of the total Rh.


Author(s):  
John Bowles ◽  
Jessica Bowles ◽  
Andrew Giże.

Soil above a platinum-group element (PGE)-bearing horizon within the Freetown Layered Intrusion, Sierra Leone contains anomalous concentrations of n-alkanes (CnH2n+2) in the range C14 to C22 not readily attributable to an algal or lacustrine origin. Longer chain n-alkanes (C23 to C31) in the soil were derived from the breakdown of leaf litter beneath the closed canopy humid tropical forest. Spontaneous breakdown of the longer chain n-alkanes to form C14-22 n-alkanes without biogenic or abiogenic catalysts is unlikely as the n-alkanes are stable. In the Freetown soil, the catalytic properties of the PGE (Pt in particular) may lower the temperature at which oxidation of the longer chain n-alkanes can occur. Reaction between these n-alkanes and Pt species such as Pt2+(H2O)2(OH)2 and Pt4+(H2O)2(OH)4 can bend and twist the alkanes, and significantly lower the Heat of Formation. Acknowledging the possibility of microbial catalysis and the difficulty of identifying a direct organic geochemical source of the lighter n-alkanes, this paper explores the theoretical potential for abiogenic Pt species catalysis as a mechanism of breakdown of the longer n-alkanes to form C14-22 alkanes. This novel mechanism could substantiate the presence of the PGE in solution predicted by soil geochemistry and illustrate processes involving the PGE. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document