fluid infiltration
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 47)

H-INDEX

28
(FIVE YEARS 2)

2022 ◽  
Vol 6 (1) ◽  
pp. 20
Author(s):  
Gerard L. Vignoles ◽  
Gaëtan Talué ◽  
Quentin Badey ◽  
Alain Guette ◽  
René Pailler ◽  
...  

The chemical supercritical fluid infiltration process is a recent variation of the chemical vapor infiltration (CVI) process that allows rapid and efficient manufacturing of ceramic-matrix composites (CMCs), albeit still needing optimization. This article proposes a quantitative assessment of the process dynamics through experiments and modeling. The kinetics of carbon deposition were determined through two sets of experiments: CVD on a single filament at pressures between 10 and 50 bar and infiltration at pressures ranging between 50 and 120 bar. The CVI experiments were conducted under important thermal gradients and were interpreted using a model-based reconstitution of these gradients. We found that (i) the kinetic law has to incorporate the potential effect of the reverse reaction (i.e., etching of C by H2); (ii) the activation energy and pre-exponential factor both decrease with pressure up to 50 bar, then remain roughly constant, and (iii) although the apparent activation energy is modest, a favorable situation occurs in which an infiltration front builds up and travels from the hottest to the coldest part of the preform due to the presence of sufficient heat flux. A numerical simulation of the process, based on the solution of momentum, heat, and mass balance equations, fed with appropriate laws for the effective transfer properties of the porous medium and their evolution with infiltration progress, was performed and validated by comparing the simulated and actual infiltration profiles.


2021 ◽  
Vol 26 (53) ◽  
pp. 1-17
Author(s):  
Nomuulin Amarbayar ◽  
Noriyoshi Tsuchiya ◽  
Otgonbayar Dandar ◽  
Atsushi Okamoto ◽  
Masaoki Uno ◽  
...  

Serpentinization of ultramafic rocks in ophiolites is key to understanding the global cycle of elements and changes in the physical properties of lithospheric mantle. Mongolia, a central part of the Central Asian Orogenic Belt (CAOB), contains numerous ophiolite complexes, but the metamorphism of ultramafic rocks in these ophiolites has been little studied. Here we present the results of our study of the serpentinization of an ultramafic body in the Manlay Ophiolite, southern Mongolia. The ultramafic rocks were completely serpentinized, and no relics of olivine or orthopyroxene were found. The composition of Cr-spinels [Mg# = Mg/(Mg + Fe2+) = 0.54 and Cr# = Cr/(Cr + Al) = 0.56] and the bulk rock chemistry (Mg/Si = 1.21–1.24 and Al/Si < 0.018) of the serpentinites indicate their origin from a fore-arc setting. Lizardite occurs in the cores and rims of mesh texture (Mg# = 0.97) and chrysotile is found in various occurrences, including in bastite (Mg# = 0.95), mesh cores (Mg# = 0.92), mesh rims (Mg# = 0.96), and later-stage large veins (Mg# = 0.94). The presence of lizardite and chrysotile and the absence of antigorite suggests low-temperature serpentinization (<300 °C). The lack of brucite in the serpentinites implies infiltration of the ultramafic rocks of the Manlay Ophiolite by Si-rich fluids. Based on microtextures and mineral chemistry, the serpentinization of the ultramafic rocks in the Manlay Ophiolite took place in three stages: (1) replacement of olivine by lizardite, (2) chrysotile formation (bastite) after orthopyroxene and as a replacement of relics of olivine, and (3) the development of veins of chrysotile that cut across all previous textures. The complex texture of the serpentinites in the Manlay Ophiolite indicates multiple stages of fluid infiltration into the ultramafic parts of these ophiolites in southern Mongolia and the CAOB.


2021 ◽  
pp. 104629
Author(s):  
Adil Chatir ◽  
Julien Berger ◽  
Nasser Ennih ◽  
Antoine Triantafyllou ◽  
Philippe de Parseval ◽  
...  

eJHaem ◽  
2021 ◽  
Author(s):  
Yoshikazu Hori ◽  
Yu Aruga ◽  
Chiaki Ikeda ◽  
Akiko Miyagi Maeshima ◽  
Koji Izutsu ◽  
...  

Author(s):  
Nils F. Jansson ◽  
Rodney L. Allen ◽  
Göran Skogsmo ◽  
Thomas Turner

AbstractUnravelling the genesis of metamorphosed mineral deposits can be complicated due to difficulties in separating between primary features and features that formed during the metamorphic overprint. Such uncertainty exists for stratabound and dolomite- and skarn-hosted Zn-Pb-Ag sulfide deposits in 1.89 Ga rocks in the Bergslagen lithotectonic unit (BLU) of Sweden, where a metasomatic vs. regional metamorphic origin for skarns has long been discussed. By integrating geological mapping with new lithogeochemical, mineralogical, and stable isotope data (C, O, S), we show that complexly zoned garnet and clinopyroxene skarns in the Sala area of the central BLU predate mineralization. Sphalerite-galena mineralization formed after the deposition of a younger, more Mn-rich ferroan diopside and andradite-grossular garnet, and is associated with phlogopite, tremolite-actinolite, chlorite, serpentine, and calcite. Mineralization in conjunction with a transition from high-T metasomatism to hydrolytic alteration is inferred. An average δ34SV-CDT of 1.6 ± 1.9‰ in sulfides is consistent with a primordial sulfur source. Trends defined by negative shifts in δ18OV-SMOW and δ13CV-PDB in dolomite and calcite are consistent with fluid infiltration at 300–500 °C. The alteration system is sharply truncated by unaltered, c. 1.89 Ga calc-alkaline granite and porphyritic intrusions, which along with F1 folding of the alteration zones and mineralization suggest that mineralization predate regional metamorphism. The Sala deposits are interpreted as Zn skarn deposits formed in conjunction with the emplacement of intrusions into penecontemporaneous marine volcanic and dolomitized limestone strata. The unusually Mg-rich mineralogy in relation to Zn skarns worldwide most likely reflects the dolomitic precursor.


2021 ◽  
Author(s):  
Jesse Walters ◽  
Alicia Cruz-Uribe ◽  
Won Joon Song ◽  
Christopher Gerbi ◽  
Kimberley Biela

Titanite is a potentially powerful U-Pb petrochronometer that may record metamorphism, metasomatism, and deformation. Titanite may also incorporate significant inherited Pb, the correction for which may introduce inaccuracies and result in geologically ambiguous U-Pb dates. Here we present laser ablation inductively coupled mass spectrometry (LA-ICP-MS)-derived titanite U-Pb dates and trace element concentrations for two banded calc-silicate gneisses from south-central Maine, USA (SSP18-1A & -1B). Single spot common Pb-corrected dates range from 400 to 280 Ma with 12–20 Ma propagated 2SE. Titanite in sample SSP18-1B exhibit regular core-to-rim variations in texture, composition, and date. We identify four titanite populations: 1) 399 ± 5 Ma (95 % CL) low Y + HREE cores and mottled grains, 2) 372 ± 7 Ma high Y + REE mantles and cores, 3) 342 ± 6 Ma cores with high Y + REE and no Eu anomaly, and 4) 295 ± 6 Ma LREE-depleted rims. We interpret the increase in titanite Y + HREE between ca. 400 and ca. 372 Ma to constrain the timing of diopside fracturing and recrystallization and amphibole breakdown. Apparent Zr-in-titanite temperatures (803 ± 36 °C at 0.5 ± 0.2 GPa) and increased XDi suggest a thermal maximum at ca. 372 Ma. Population 3 domains dated to ca. 342 Ma exhibit no Eu anomaly and are observed only in compositional bands dominated by diopside (> 80 vol %), suggesting limited equilibrium between titanite and plagioclase. Finally, low LREE and high U/Th in Population 4 titanite date the formation of hydrous phases, such as allanite, during high XH2O fluid infiltration at ca. 295 Ma. In contrast to the well-defined date-composition-texture relationships observed for titanite from SSP18-1B, titanite grains from sample SSP18-1A exhibit complex zoning patterns and little correlation between texture, composition, and date. We hypothesize that the incorporation of variable amounts of radiogenic Pb from dissolved titanite into recrystallized domains resulted in mixed ages spanning 380–330 Ma. Although titanite may reliably record multiple phases of metamorphism, these data highlight the importance of considering U-Pb data along with chemical and textural data to screen for inherited radiogenic Pb.


Cureus ◽  
2021 ◽  
Author(s):  
Amr Tawfik ◽  
Bryan Hozack ◽  
Justin Melendez ◽  
Bobby Varghese ◽  
Brian M Katt ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Muhammad Nasir Rasheed ◽  
Muhammad Ahmad

Sign in / Sign up

Export Citation Format

Share Document