magmatic volatiles
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Simone Colucci ◽  
Federico Brogi ◽  
Chiara Montagna

<p>Bubble growth is one of the key processes that govern the degassing of magmatic systems and drive volcanic eruptions. Typically, the gas exsolution process begins with the nucleation of bubbles in an oversaturated melt and continues with bubble growth. Bubbles grow by mass diffusion, when the silicate melt is oversaturated in volatiles, and by mechanical expansion as a response to pressure decrease. The viscosity of the surrounding melt and the surface tension oppose a resistance to bubble growth and control the mechanical disequilibrium between the bubbles and the melt itself. The combination of the Rayleigh-Plesset equation with a diffusion equation represents a common approach to describe diffusive bubble growth. A number of models have been developed for describing bubble growth dynamics in magmas, most of them accounting for a single volatile specie. Nevertheless, the multicomponent nature of magmatic volatiles has long been recognised to play a major role in controlling magmatic exsolution process. Here we present a model describing bubble growth in magmas in the presence of multiple volatile species through a fully non-ideal multicomponent saturation model.  Numerical simulations show the role of the different species (e.g., water and carbon dioxide) in the dynamics of diffusive bubble growth for different melt compositions. The new model is implemented in the MagmaFOAM library,  a dedicated computational tool to solve multiphase flows characterizing magmatic systems that extends the open-source library OpenFOAM. Within the MagmaFOAM framework it is possible to combine the bubble growth model with fluid solvers in order to fully capture the multi-scale nature of liquid and gas phases in magmatic systems.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sahand Hajimirza ◽  
Helge M. Gonnermann ◽  
James E. Gardner

AbstractMagma from Plinian volcanic eruptions contains an extraordinarily large numbers of bubbles. Nucleation of those bubbles occurs because pressure decreases as magma rises to the surface. As a consequence, dissolved magmatic volatiles, such as water, become supersaturated and cause bubbles to nucleate. At the same time, diffusion of volatiles into existing bubbles reduces supersaturation, resulting in a dynamical feedback between rates of nucleation due to magma decompression and volatile diffusion. Because nucleation rate increases with supersaturation, bubble number density (BND) provides a proxy record of decompression rate, and hence the intensity of eruption dynamics. Using numerical modeling of bubble nucleation, we reconcile a long-standing discrepancy in decompression rate estimated from BND and independent geospeedometers. We demonstrate that BND provides a record of the time-averaged decompression rate that is consistent with independent geospeedometers, if bubble nucleation is heterogeneous and facilitated by magnetite crystals.


2021 ◽  
pp. 301-312
Author(s):  
Paul J. Wallace
Keyword(s):  

2020 ◽  
Vol 16 ◽  
pp. 17-24
Author(s):  
F. Schiavi ◽  
N. Bolfan-Casanova ◽  
R. Buso ◽  
M. Laumonier ◽  
D. Laporte ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Stephen Fox ◽  
Yaron Katzir ◽  
Wolfgang Bach ◽  
Lucy Schlicht ◽  
Justin Glessner

AbstractCirculation of seawater at oceanic spreading centers extracts heat, drives rock alteration, and transports leached metals to shallower levels of the crust, where they may precipitate and form ore deposits. Crystallization of the lower crust, may exsolve and introduce magmatic volatiles into the seawater-dominant system. However, the role of magmatic volatiles added to the hydrothermal system, including pathways of these fluids are lesser known. Here we present coupled in-situ strontium isotope and rare earth element data of distinct domains in epidote, a common hydrothermal mineral throughout the Troodos ophiolite, to track magmatic fluid input and flow. Epidote crystal domains characterize three distinct strontium isotope-rare earth element signatures—suggesting sequential growth from magma-derived fluids (0.704, negative europium anomalies), rock-buffered fluids (0.7055, positive europium anomalies) and seawater-derived fluids (0.7065, negative cerium anomalies). Epidote records episodic fluxing of magmatic fluids from plagiogranites, through epidosites in the upflow zone and into metal ore deposits.


2020 ◽  
Vol 115 (7) ◽  
pp. 1537-1558
Author(s):  
James S. Lambert-Smith ◽  
Andrew Allibone ◽  
Peter J. Treloar ◽  
David M. Lawrence ◽  
Adrian J. Boyce ◽  
...  

Abstract The Gara, Yalea, and Gounkoto Au deposits of the >17 Moz Loulo mining district, largely hosted by the Kofi series metasediments, are located several kilometers to the east of the 650-Mt Fe skarn deposits in the adjacent Falémé batholith. The Au deposits are interpreted to have formed through phase separation of an aqueous-carbonic fluid, which locally mixed with a hypersaline brine of metaevaporite origin. Recognition of an intrusive relationship between the Falémé batholith and Kofi series opens the possibility that the Fe skarns and Au deposits are part of the same mineral system. In this paper, we combine new δ13C, δ18O, and δ34S data from the Karakaene Ndi skarn, Au occurrences along the western margin of the Kofi series, and zircons within plutonic rocks of the Falémé batholith. We combine these with existing data from the Loulo Au deposits to model the contribution of magmatic volatiles to Au mineralization. C and O isotope compositions of auriferous carbonate-quartz-sulfide veins from the Loulo Au deposits have wide ranges (δ13C: –21.7 to –4.5‰ and δ18O: 11.8 to 23.2‰), whereas values from carbonate veins in Kofi series Au prospects close to the Falémé batholith and the Karakaene Ndi Fe skarn deposit have more restricted ranges (δ13C: –16.8 to –3.7‰, δ18O: 11.4 to 17.2‰, and δ13C: –3.0 ± 1‰, δ18O: 12.6 ± 1‰, respectively). Kofi series dolostones have generally higher isotopic values (δ13C: –3.1 to 1.3‰ and δ18O: 19.1 to 23.3‰). Pyrite from Kofi series Au prospects adjacent to the Falémé batholith have a wide range of δ34S values (–4.6 to 14.2‰), similar to pyrite from the Karakaene Ndi skarn (2.8 to 11.9‰), whereas δ34S values of pyrite and arsenopyrite from the Loulo deposits are consistently >6‰. Comparison of the C and O isotope data with water-rock reaction models indicates the Loulo Au deposits formed primarily through unmixing of an aqueous carbonic fluid derived from the devolatilization of sedimentary rocks with an organic carbon component. Isotopic data are permissive of the hypersaline brine that enhanced this phase separation including components derived from both Kofi series evaporite horizons interlayered with the dolostones and a magmatic-hydrothermal brine. This magmatic-hydrothermal component is particularly apparent in O, C, and S isotope data from the Gara deposit and Au prospects immediately adjacent to the Falémé batholith.


Author(s):  
Weiran Li ◽  
Fidel Costa ◽  
Kazuhide Nagashima

Abstract Magma volatile budgets and storage depths play a key role in controlling the eruptive styles of volcanoes. Volatile concentrations in the melt can be inferred from analyses of glass inclusions, which however may not be present in the investigated rocks or may have experienced post-entrapment processes that modify their volatile records. Apatite is becoming an alternative robust tool for unraveling the information of magmatic volatiles. Here we report a comprehensive dataset for the concentrations of volatiles and major elements in apatite crystals in the rocks from two eruptions with contrasting eruptive styles: the 2006 (dome-forming) and 2010 (explosive) eruptive events at Merapi volcano (Java, Indonesia). We obtained two-dimensional compositional distributions and in situ concentrations of H2O, CO2, F, Cl, and S in 50 apatite crystals occurring at various textural positions. The CO2 concentrations we report are probably the first ones from natural volcanic apatite. Using the volatile concentrations in apatite and existing thermodynamic models and geothermobarometers, we have calculated the volatile abundances of the pre-eruptive melts of the two eruptions. We find that the apatite from the 2006 and 2010 deposits have a similar compositional range of volatiles, with a bimodal distribution of F-H2O-CO2 contents. The apatite included in amphibole has higher H2O (0.9–1.0 wt.%) and CO2 (Type equation here.≥2400 ppm), but lower F (0.9–1.4 wt.%), compared to crystals included in plagioclase, clinopyroxene, or in the groundmass (H2O: 0.4–0.7 wt.%; CO2: 40–900 ppm; F: 1.7–2.3 wt.%). Using these volatile concentrations and apatite-melt exchange coefficients we obtained two distinct ranges of H2O-CO2-S-F-Cl concentrations in the melt. Melts in equilibrium with apatite included in amphibole had 3–8 wt.% H2O, ≥8000 ppm CO2, 340–2000 ppm S, whereas melts in equilibrium with apatite included in anhydrous minerals and in the groundmass had lower H2O (1.5–4 wt.%), CO2 (60–2500 ppm), and S (10-130 ppm). We calculated the melt H2O-CO2 saturation pressures and found that they correspond to two main magma storage depths. The shallow reservoir with melts stored at ≤10 km below the crater agrees with the depths constrained by melt inclusions, as well as the geodetic, geophysical, and seismic tomography studies from the literature. We have also found a significantly deeper melt storage zone at ≥25–30 km recorded by the C- and H2O-rich apatite in amphibole and barometry calculations using amphibole and high-Al clinopyroxene, which matches with the depths reported in seismic tomography studies. The high CO2/H2O and CO2/SO2 concentrations of the deep melt can help to explain the sharp increase in these ratios in fumarolic gas that were sampled just before the eruption in 2010. Supply of deep volatiles to the shallower magma column before the eruption in 2010 could have increased the magma buoyancy, and thus led to higher magma ascent rates and associated eruption explosivity. Evidence for the faster pre-eruptive magma ascent in 2010 than 2006 is also found on the diffusion distance of Cl in apatite microlites.


Sign in / Sign up

Export Citation Format

Share Document