Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa

1989 ◽  
Vol 11 (1) ◽  
pp. 25-48 ◽  
Author(s):  
Tamar Zohary ◽  
Richard D. Robarts
2021 ◽  
Author(s):  
Bogdan Drugă ◽  
Elisabeth Ramm ◽  
Edina Szekeres ◽  
Cecilia Chiriac ◽  
Adriana Hegedüs ◽  
...  

Author(s):  
Albert A. Koelmans ◽  
Hannelore van der Woude ◽  
Jasper Hattink ◽  
Dominique J.M. Niesten

2021 ◽  
Vol 51 (1) ◽  
pp. 187-206
Author(s):  
Zhiwei Zhang ◽  
Xincheng Zhang ◽  
Bo Qiu ◽  
Wei Zhao ◽  
Chun Zhou ◽  
...  

AbstractAlthough observational efforts have been made to detect submesoscale currents (submesoscales) in regions with deep mixed layers and/or strong mesoscale kinetic energy (KE), there have been no long-term submesoscale observations in subtropical gyres, which are characterized by moderate values of both mixed layer depths and mesoscale KE. To explore submesoscale dynamics in this oceanic regime, two nested mesoscale- and submesoscale-resolving mooring arrays were deployed in the northwestern Pacific subtropical countercurrent region during 2017–19. Based on the 2 years of data, submesoscales featuring order one Rossby numbers, large vertical velocities (with magnitude of 10–50 m day−1) and vertical heat flux, and strong ageostrophic KE are revealed in the upper 150 m. Although most of the submesoscales are surface intensified, they are found to penetrate far beneath the mixed layer. They are most energetic during strong mesoscale strain periods in the winter–spring season but are generally weak in the summer–autumn season. Energetics analysis suggests that the submesoscales receive KE from potential energy release but lose a portion of it through inverse cascade. Because this KE sink is smaller than the source term, a forward cascade must occur to balance the submesoscale KE budget, for which symmetric instability may be a candidate mechanism. By synthesizing observations and theories, we argue that the submesoscales are generated through a combination of baroclinic instability in the upper mixed and transitional layers and mesoscale strain-induced frontogenesis, among which the former should play a more dominant role in their final generation stage.


2015 ◽  
Vol 71 (6) ◽  
pp. 856-861 ◽  
Author(s):  
Zhibin Liu ◽  
Lirong Zhou ◽  
Dandan Liu ◽  
Qiyu Zhu ◽  
Wenqing Chen

Our previous work revealed that Acacia mearnsii extract can inhibit the growth of Microcystis aeruginosa, the common species forming toxic cyanobacterial blooms in eutrophic freshwater. In the present study, we demonstrated that this plant extract can significantly increase cell membrane permeability and Ca2+/Mg2+-ATPase activity on the membrane. Long-term exposure to concentrations of 20 ppm A. mearnsii extract led to algal cell membrane leakage or even lysis. Comparison of expression of three photosynthesis-related genes (rbcL, psaB and psbD) in M. aeruginosa with and without plant extract treatment revealed that their expression was remarkably reduced in the presence of the extract. Down-regulation of photosynthesis-related genes could indicate the inhibition of the photosynthetic process. Thus, our results suggested that both photosynthetic systems and membranes of M. aeruginosa are potentially damaged by A. mearnsii extract.


2020 ◽  
Vol 8 (6) ◽  
pp. 890
Author(s):  
Guligena Muhetaer ◽  
Senavirathna M.D.H. Jayasanka ◽  
Takeshi Fujino

Two harmful cyanobacteria species (Phormidium ambiguum and Microcystis aeruginosa) were exposed to diurnal light-intensity variation to investigate their favorable and stressed phases during a single day. The photosynthetically active radiation (PAR) started at 0 µmol·m−2·s−1 (06:00 h), increased by ~25 µmol·m−2·s−1 or ~50 µmol·m−2·s−1 every 30 min, peaking at 300 µmol·m−2·s−1 or 600 µmol·m−2·s−1 (12:00 h), and then decreased to 0 µmol·m−2·s−1 (by 18:00 h). The H2O2 and antioxidant activities were paralleled to light intensity. Higher H2O2 and antioxidant levels (guaiacol peroxidase, catalase (CAT), and superoxidase dismutase) were observed at 600 µmol·m−2·s−1 rather than at 300 µmol·m−2·s−1. Changes in antioxidant levels under each light condition differed between the species. Significant correlations were observed between antioxidant activities and H2O2 contents for both species, except for the CAT activity of P. ambiguum at 300 µmol·m−2·s−1. Under each of the conditions, both species responded proportionately to oxidative stress. Even under maximum light intensities (300 µmol·m−2·s−1 or 600 µmol·m−2·s−1 PAR intensity), neither species was stressed. Studies using extended exposure durations are warranted to better understand the growth performance and long-term physiological responses of both species.


2017 ◽  
Vol 14 (5) ◽  
pp. 1235-1259 ◽  
Author(s):  
Glaucia M. Fragoso ◽  
Alex J. Poulton ◽  
Igor M. Yashayaev ◽  
Erica J. H. Head ◽  
Duncan A. Purdie

Abstract. The Labrador Sea is an ideal region to study the biogeographical, physiological, and biogeochemical implications of phytoplankton community composition due to sharp transitions between distinct water masses across its shelves and central basin. We have investigated the multi-year (2005–2014) distributions of late spring and early summer (May to June) phytoplankton communities in the various hydrographic settings of the Labrador Sea. Our analysis is based on pigment markers (using CHEMTAX analysis), and photophysiological and biogeochemical characteristics associated with each phytoplankton community. Diatoms were the most abundant group, blooming first in shallow mixed layers of haline-stratified Arctic shelf waters. Along with diatoms, chlorophytes co-dominated at the western end of the section (particularly in the polar waters of the Labrador Current (LC)), whilst Phaeocystis co-dominated in the east (modified polar waters of the West Greenland Current (WGC)). Pre-bloom conditions occurred in deeper mixed layers of the central Labrador Sea in May, where a mixed assemblage of flagellates (dinoflagellates, prasinophytes, prymnesiophytes, particularly coccolithophores, and chrysophytes/pelagophytes) occurred in low-chlorophyll areas, succeeding to blooms of diatoms and dinoflagellates in thermally stratified Atlantic waters in June. Light-saturated photosynthetic rates and saturation irradiance levels were highest at stations where diatoms were the dominant phytoplankton group ( >  70 % of total chlorophyll a), as opposed to stations where flagellates were more abundant (from 40 up to 70 % of total chlorophyll a). Phytoplankton communities from the WGC (Phaeocystis and diatoms) had lower light-limited photosynthetic rates, with little evidence of photoinhibition, indicating greater tolerance to a high light environment. By contrast, communities from the central Labrador Sea (dinoflagellates and diatoms), which bloomed later in the season (June), appeared to be more sensitive to high light levels. Ratios of accessory pigments (AP) to total chlorophyll a (TChl a) varied according to phytoplankton community composition, with polar phytoplankton (cold-water related) having lower AP  :  TChl a. Polar waters (LC and WGC) also had higher and more variable particulate organic carbon (POC) to particulate organic nitrogen (PON) ratios, suggesting the influence of detritus from freshwater input, derived from riverine, glacial, and/or sea ice meltwater. Long-term observational shifts in phytoplankton communities were not assessed in this study due to the short temporal frame (May to June) of the data. Nevertheless, these results add to our current understanding of phytoplankton group distribution, as well as an evaluation of the biogeochemical role (in terms of C  :  N ratios) of spring phytoplankton communities in the Labrador Sea, which will assist our understanding of potential long-term responses of phytoplankton communities in high-latitude oceans to a changing climate.


Sign in / Sign up

Export Citation Format

Share Document