scholarly journals Molecular modeling of HIV-1 reverse transcriptase drug-resistant mutant strains: implications for the mechanism of polymerase action

1997 ◽  
Vol 10 (12) ◽  
pp. 1379-1383 ◽  
Author(s):  
M. B. Kroeger Smith ◽  
C. J. Michejda ◽  
S. H. Hughes ◽  
P. L. Boyer ◽  
P. A. Janssen ◽  
...  
2011 ◽  
Vol 22 (3) ◽  
pp. 107-118 ◽  
Author(s):  
Alberta Samuele ◽  
Sara Bisi ◽  
Alexandra Kataropoulou ◽  
Giuseppe La Regina ◽  
Francesco Piscitelli ◽  
...  

Background: Novel indolylarylsulfones (lASs), designed through rational structure-based molecular modelling and docking approaches, have been recently characterized as effective inhibitors of the wild-type and drug-resistant mutant HIV-1 reverse transcriptase (RT). Methods: Here, we studied the interaction of selected halo- and nitra-substituted IAS derivatives, with the RT enzyme carrying the single resistance mutations K103N and Y181I through steady-state kinetic experiments. Results: The studied compounds exhibited high selectivity to the mutant RT in complex with its substrates, behaving as uncompetitive inhibitors. The presence of the K103N mutation, and to a lesser extent the Y181I, stabilized the drug interactions with the viral RT, when both its substrates were bound. Conclusions: The characterization of these mutation-specific effects on inhibitor binding might be relevant to the design of more effective new generation non-nucleoside reverse transcriptase inhibitors, with better resilience towards drug resistant mutants.


2013 ◽  
Vol 94 (10) ◽  
pp. 2297-2308
Author(s):  
Jiong Wang ◽  
Dongge Li ◽  
Robert A. Bambara ◽  
Carrie Dykes

Previous work by our group showed that human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) containing non-nucleoside RT inhibitor (NNRTI) drug resistance mutations has defects in RNase H activity as well as reduced amounts of RT protein in virions. These deficits correlate with replication fitness in the absence of NNRTIs. Viruses with the mutant combination K101E+G190S replicated better in the presence of NNRTIs than in the absence of drug. Stimulation of virus growth by NNRTIs occurred during the early steps of the virus life cycle and was modulated by the RT backbone sequence in which the resistance mutations arose. We wanted to determine what effects RT backbone sequence would have on RT content and polymerization and RNase H activities in the absence of NNRTIs. We compared a NL4-3 RT with K101E+G190S to a patient-isolate RT sequence D10 with K101E+G190S. We show here that, unlike the NL4-3 backbone, the D10 backbone sequence decreased the RNA-dependent DNA polymerization activity of purified recombinant RT compared to WT. In contrast, RTs with the D10 backbone had increased RNase H activity compared to WT and K101E+G190S in the NL4-3 backbone. D10 virions also had increased amounts of RT compared to K101E+G190S in the NL4-3 backbone. We conclude that the backbone sequence of RT can alter the activities of the NNRTI drug-resistant mutant K101E+G190S, and that identification of the amino acids responsible will aid in understanding the mechanism by which NNRTI drug-resistant mutants alter fitness and NNRTIs stimulate HIV-1 virus replication.


2003 ◽  
Vol 77 (2) ◽  
pp. 1306-1315 ◽  
Author(s):  
Moses Prabu-Jeyabalan ◽  
Ellen A. Nalivaika ◽  
Nancy M. King ◽  
Celia A. Schiffer

ABSTRACT Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more closely with the drugs than with the natural substrate peptides. The V82A mutation compromises these interactions with the drugs while not greatly affecting the substrate interactions, which is consistent with previously published kinetic data. Coupled with our earlier observations, these findings suggest that future inhibitor design may reduce the probability of the appearance of drug-resistant mutations by targeting residues that are essential for substrate recognition.


1984 ◽  
Vol 102 (3) ◽  
pp. 521-529 ◽  
Author(s):  
R. Rai ◽  
V. Prasad ◽  
I. C. Shukla

SummaryAzospirillum brasilensewas treated with nitrosoguanidine and five drug-resistant mutant strains isolated. The effects of acriflavin on pre- and post-irradiation with u.v. light and the level of antibiotic resistance were studied. Variations in factors were found between the strains. Inoculation of finger millet withA. brasilenseand mutant strains led to significant increases in grain yield and nitrogenase activity compared with the uninoculated control, with significant strain x genotype interactions. Differential response of genotype and strain was noted on the protein and amino acid concentration of seeds.


Biochemistry ◽  
2018 ◽  
Vol 57 (10) ◽  
pp. 1652-1662 ◽  
Author(s):  
Shahid N. Khan ◽  
John D. Persons ◽  
Janet L. Paulsen ◽  
Michel Guerrero ◽  
Celia A. Schiffer ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1050 ◽  
Author(s):  
Yuan Lei ◽  
Sheng Han ◽  
Yang Yang ◽  
Christophe Pannecouque ◽  
Erik De Clercq ◽  
...  

The key problems of human immunodeficiency virus (HIV) therapy are the rapid emergence of drug-resistant mutant strains and significant cumulative drug toxicities. Therefore, there is an urgent demand for new anti-HIV agents with low toxicity and broad-spectrum antiviral potency. A series of biphenyl-substituted diarylpyrimidines with a cyanomethyl linker were designed using a molecular hybridization strategy. The cell-based anti-HIV assay showed that most of the compounds exhibited moderate to good activities against wild-type HIV-1 and clinically relevant mutant strains with a more favorable toxicity, and the enzymatic assay showed they had nanomolar activity against reverse transcriptase (RT). Compound 10p exhibited the best activity against wild-type HIV-1 with an EC50 (50% HIV-1 replication inhibitory concentration) value of 0.027 µM, an acceptable CC50 (50% cytotoxic concentration) value of 36.4 µM, and selectivity index of 1361, with moderate activities against the single mutants (EC50: E138K, 0.17 µM; Y181C, 0.87 µM; K103N, 0.9 µM; L100I, 1.21 µM, respectively), and an IC50 value of 0.059 µM against the RT enzyme, which was six-fold higher than nevirapine (NVP). The preliminary structure–activity relationship (SAR) of these new compounds was concluded. The molecular modeling predicted the binding modes of the new compounds with RT, providing molecular insight for further drug design.


Sign in / Sign up

Export Citation Format

Share Document