scholarly journals Understanding the muon anomalous magnetic moment in light of a flavor symmetry-based Minimal Supersymmetric Standard Model

2018 ◽  
Vol 2018 (8) ◽  
Author(s):  
Mureed Hussain ◽  
Rizwan Khalid
2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Junjie Cao ◽  
Jingwei Lian ◽  
Yusi Pan ◽  
Di Zhang ◽  
Pengxuan Zhu

Abstract Very recently, a Fermilab report of muon g− 2 showed a 4.2σ discrepancy between it and the standard model (SM) prediction. Motivated by this inspiring result and the increasing tension in supersymmetric interpretation of the anomalous magnetic moment, it is argued that in the general next-to-minimal supersymmetric standard model (GNMSSM), a singlino-dominated neutralino can act as a feasible dark matter (DM) candidate in explaining the discrepancy naturally. In this case, the singlino-dominated DM and singlet-dominated Higgs bosons can form a secluded DM sector with $$ {\overset{\sim }{\chi}}_1^0{\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 χ ~ 1 0 → hsAs responsible for the measured DM relic abundance when $$ {m}_{{\overset{\sim }{\chi}}_1^0} $$ m χ ~ 1 0 ≳ 150 GeV and the Yukawa coupling κ is around 0.2. This sector communicates with the SM sector by weak singlet-doublet Higgs mixing, so the scatterings of the singlino-dominated DM with nucleons are suppressed. Furthermore, due to the singlet nature of the DM and the complex mass hierarchy, sparticle decay chains in the GNMSSM are lengthened in comparison with the prediction of the minimal supersymmetric standard model. These characteristics lead to sparticle detection at the Large Hadron Collider (LHC) being rather tricky. This study surveys a specific scenario of the GNMSSM, which extends the ℤ3-NMSSM by adding an explicit μ-term, to reveal the features. It indicates that the theory can readily explain the discrepancy of the muon anomalous magnetic moment without conflicting with the experimental results in DM and Higgs physics, and the LHC searches for sparticles.


2001 ◽  
Vol 16 (12) ◽  
pp. 795-802 ◽  
Author(s):  
M. FRANK

We show that, in supersymmetric theories beyond the Minimal Supersymmetric Standard Model, the anomalous magnetic moment of the muon can receive large contributions at one-loop level, of [Formula: see text], rather than [Formula: see text]. We evaluate all such contributions and show that, for low supersymmetric masses, they already exceed the value measured by the Brookhaven E821 experiment. These contributions put more stringent mass constraints on the parameters of the model and can distinguish it from the same process in the MSSM.


2003 ◽  
Vol 18 (16) ◽  
pp. 2769-2778
Author(s):  
Graham D. Kribs

I explain the theoretical connection between lepton flavor violation and muon g - 2 in supersymmetry1. Given any central value deviation of muon g - 2 from the standard model that is assumed to be due to weak scale supersymmetry, I show that stringent bounds on lepton flavor violating scalar masses can be extracted. These bounds are essentially independent of supersymmetric parameter space. I then briefly compare this indirect handle on supersymmetric lepton flavor violation with direct observation at a future lepton collider operating in the e- e- mode. This is a summary of a talk given at e- e-01: 4th International Workshop on Electron-Electron Interactions at TeV Energies.


2018 ◽  
Vol 179 ◽  
pp. 01004 ◽  
Author(s):  
Tim Gorringe

The Fermilab muon g-2 experiment will measure the muon anomalous magnetic moment aμ to 140 ppb – a four-fold improvement over the earlier Brookhaven experiment. The measurement of aμ is well known as a unique test of the standard model with broad sensitivity to new interactions, particles and phenomena. The goal of 140 ppb is commensurate with ongoing improvements in the SM prediction of the anomalous moment and addresses the longstanding 3.5σ discrepancy between the BNL result and the SM prediction. In this article I discuss the physics motivation and experimental technique for measuring aμ, and the current status and the future work for the project.


Author(s):  
Anna Driutti

The aim of the Muon g-2g−2 Experiment at Fermilab (E989) is to measure the muon anomalous magnetic moment (a_\muaμ) with a relative precision of 140 parts-per-billion (ppb). This precision, which is a factor of four improvement from the current experimental result, will allow for a much more stringent test of the Standard Model. This paper present the current status of the experimental measurement of a_\muaμ after the first physics run.


Sign in / Sign up

Export Citation Format

Share Document