scholarly journals Improved (g − 2)μ measurement and singlino dark matter in μ-term extended ℤ3-NMSSM

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Junjie Cao ◽  
Jingwei Lian ◽  
Yusi Pan ◽  
Di Zhang ◽  
Pengxuan Zhu

Abstract Very recently, a Fermilab report of muon g− 2 showed a 4.2σ discrepancy between it and the standard model (SM) prediction. Motivated by this inspiring result and the increasing tension in supersymmetric interpretation of the anomalous magnetic moment, it is argued that in the general next-to-minimal supersymmetric standard model (GNMSSM), a singlino-dominated neutralino can act as a feasible dark matter (DM) candidate in explaining the discrepancy naturally. In this case, the singlino-dominated DM and singlet-dominated Higgs bosons can form a secluded DM sector with $$ {\overset{\sim }{\chi}}_1^0{\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 χ ~ 1 0 → hsAs responsible for the measured DM relic abundance when $$ {m}_{{\overset{\sim }{\chi}}_1^0} $$ m χ ~ 1 0 ≳ 150 GeV and the Yukawa coupling κ is around 0.2. This sector communicates with the SM sector by weak singlet-doublet Higgs mixing, so the scatterings of the singlino-dominated DM with nucleons are suppressed. Furthermore, due to the singlet nature of the DM and the complex mass hierarchy, sparticle decay chains in the GNMSSM are lengthened in comparison with the prediction of the minimal supersymmetric standard model. These characteristics lead to sparticle detection at the Large Hadron Collider (LHC) being rather tricky. This study surveys a specific scenario of the GNMSSM, which extends the ℤ3-NMSSM by adding an explicit μ-term, to reveal the features. It indicates that the theory can readily explain the discrepancy of the muon anomalous magnetic moment without conflicting with the experimental results in DM and Higgs physics, and the LHC searches for sparticles.

Author(s):  
Shehu AbdusSalam ◽  
Safura S. Barzani ◽  
Mohammadreza Noormandipour

Experimental collaborations for the large hadron collider conducted various searches for supersymmetry. In the absence of signals, lower limits were put on sparticle masses but usually within frameworks with (over-)simplifications relative to the entire indications by supersymmetry models. For complementing current interpretations of experimental bounds, we introduce a 30-parameter version of the R-parity conserving Minimal Supersymmetric Standard Model (MSSM-30). Using a sample of the MSSM-30 which are in harmony with cold dark matter, flavor and precision electroweak constraints, we explicitly show the prospects for assessing neutralino candidate dark matter in contrast to future searches for supersymmetry. The MSSM-30-parameter regions that are beyond reach to dark matter direct detection experiments could be probed by future hadron–hadron colliders.


2001 ◽  
Vol 16 (12) ◽  
pp. 795-802 ◽  
Author(s):  
M. FRANK

We show that, in supersymmetric theories beyond the Minimal Supersymmetric Standard Model, the anomalous magnetic moment of the muon can receive large contributions at one-loop level, of [Formula: see text], rather than [Formula: see text]. We evaluate all such contributions and show that, for low supersymmetric masses, they already exceed the value measured by the Brookhaven E821 experiment. These contributions put more stringent mass constraints on the parameters of the model and can distinguish it from the same process in the MSSM.


2009 ◽  
Vol 24 (18n19) ◽  
pp. 3501-3507
Author(s):  
TOSHIFUMI JITTOH ◽  
KAZUNORI KOHRI ◽  
MASAFUMI KOIKE ◽  
JOE SATO ◽  
TAKASHI SHIMOMURA ◽  
...  

We find that we can account for the possible descrepancy of the primordial abundance of 7 Li between the observation and the prediction of the Big-Bang Nucleosynthesis in a scenario of the Big-Bang Nucleosynthesis with the Minimal Supersymmetric Standard Model. This scenario is consistent with a stau-neutralino coannihilation scenario to explain the relic abundance of dark matter. The solution to the discrepancy is given by taking the values of parameters; the mass of the neutralino as 300 GeV and the mass difference between the stau and the neutralino as (100 – 120) MeV.


2002 ◽  
Vol 17 (12n13) ◽  
pp. 1829-1840 ◽  
Author(s):  
ALDO MORSELLI

The direct detection of annihilation products in cosmic rays offers an alternative way to search for supersymmetric dark matter particles candidates. The study of the spectrum of gamma-rays, antiprotons and positrons offers good possibilities to perform this search in a significant portion of the Minimal Supersymmetric Standard Model parameters space. In particular the EGRET team have seen a convincing signal for a strong excess of emission from the galactic center that have not easily explanation with standard processes. We will review the achievable limits with the experiment GLAST taking into accounts the LEP results and we will compare this method with the antiproton and positrons experiments, the direct underground detection and with future experiments at LHC.


Sign in / Sign up

Export Citation Format

Share Document