The Effect of Electrical Stimulation on Quadriceps Femoris Muscle Torque in Children with Spina Bifida

1992 ◽  
Vol 72 (10) ◽  
pp. 723-730 ◽  
Author(s):  
Karen Karmel-Ross ◽  
Daniel R Cooperman ◽  
Clayton L Van Doren
Author(s):  
Ryosuke Nakanishi ◽  
◽  
Minoru Tanaka ◽  
Noriaki Maeshige ◽  
Hidemi Fujino ◽  
...  

Background/Aims: This study investigated whether pulsed magnetic stimulation contracts superficial and/or deep muscles compared with those induced by electrical stimulations, i.e., low- and kilohertzfrequency currents. Methods: Eight healthy subjects were recruited and measured the quadriceps femoris muscle thickness using ultrasound imaging, and Visual Analog Scale (VAS) for stimulation-induced pain during the same stimulation intensity. Results: Pulsed magnetic stimulation increased the thickness of rectus femoris muscle similar to other electrical stimulations, but not the vastus intermedius muscle. Meanwhile, the pain score of VAS caused by pulsed magnetic stimulation was lower than that by those electrical stimulations. Conclusions: These results suggest that pulsed magnetic stimulation is effective for the contraction of superficial layer muscles without stimulation-induced pain but not for contraction of deep layer muscles. Keywords: pulsed magnetic stimulation; electrical stimulation; stimulation-induced pain; muscle contraction.


1992 ◽  
Vol 72 (8) ◽  
pp. 585-592 ◽  
Author(s):  
Leslie Afzali ◽  
Fumi Kuwabara ◽  
James Zachazewski ◽  
Phyllis Browne ◽  
Bonnie Robinson

2001 ◽  
Vol 81 (7) ◽  
pp. 1307-1316 ◽  
Author(s):  
Yocheved Laufer ◽  
Julie Deanne Ries ◽  
Peter M Leininger ◽  
Gad Alon

Abstract Background and Purpose. Neuromuscular electrical stimulation is used by physical therapists to improve muscle performance. Optimal forms of stimulation settings are yet to be determined, as are possible sex-related differences in responsiveness to electrical stimulation. The objectives of the study were: (1) to compare the ability of 3 different waveforms to generate isometric contractions of the quadriceps femoris muscles of individuals without known impairments, (2) to compare muscle fatigue caused by repeated contractions induced by these same waveforms, and (3) to examine the effect of sex on muscle force production and fatigue induced by electrical stimulation. Subjects. Fifteen women and 15 men (mean age=29.5 years, SD=5.4, range=22–38) participated in the study. Methods. A portable battery-operated stimulator was used to generate either a monophasic or biphasic rectangular waveform. A stimulator that was plugged into an electrical outlet was used to generate a 2,500-Hz alternating current. Phase duration, frequency, and on-off ratios were kept identical for both stimulators. Participants did not know the type of waveform being used. Torque was measured using a computerized dynamometer: a maximal voluntary isometric contraction (MVIC) of the right quadriceps femoris muscle set at 60 degrees of knee flexion was determined during the first session. In each of the 3 testing sessions, torque of contraction and fatigue elicited by one waveform were measured. Order of testing was randomized. Torque elicited by electrical stimulation was expressed as a percentage of average MVIC. A mixed-model analysis of variance was used to determine the effect of stimulation and sex on strength of contraction and fatigue. Bonferroni-corrected post hoc tests were used to further distinguish between the effects of the 3 stimulus waveforms. Results. The results indicated that the monophasic and biphasic waveforms generated contractions with greater torque than the polyphasic waveform. These 2 waveforms also were less fatiguing. The torques from the maximally tolerated electrically elicited contractions were greater for the male subjects than for the female subjects. Discussion and Conclusion. Muscle torque and fatigue of electrically induced contractions depend on the waveform used to stimulate the contraction, with monophasic and biphasic waveforms having an advantage over the polyphasic waveform. All tested waveforms elicited, on average, stronger contractions in male subjects than in female subjects when measured as a percentage of MVIC.


1986 ◽  
Vol 7 (4) ◽  
pp. 145-153 ◽  
Author(s):  
Michael G. Parker ◽  
Matthew Berhold ◽  
Robert Brown ◽  
Steven Hunter ◽  
Mathew R. Smith ◽  
...  

1999 ◽  
Vol 79 (8) ◽  
pp. 738-748 ◽  
Author(s):  
Samuel CK Lee ◽  
Michelle L Gerdom ◽  
Stuart A Binder-Macleod

Abstract Background and Purpose. Recent reports have suggested that electrical stimulation trains that take advantage of the catchlike property of skeletal muscle can produce higher forces from skeletal muscle than traditionally used constant-frequency trains. This study investigated the effects of catchlike-inducing trains on human quadriceps femoris muscles while the knee joint was held at 15 degrees of flexion. Subjects and Methods. Subjects (N=12) were tested with constant-frequency trains that had interpulse intervals ranging from 10 to 160 milliseconds and comparable catchlike-inducing trains. Data were collected during the control condition (1 train every 10 seconds) and during repetitive contractions (1 train per second). Results. During control and repetitive activation conditions, catchlike-inducing trains produced approximately 5% to 110% greater peak forces than comparable constant-frequency trains, depending on the frequencies being compared. Total forces produced (ie, force-time integrals) were increased up to 59% and 49% during the control and repetitive activation conditions, respectively. Conclusion and Discussion. These results support earlier findings that catchlike-inducing trains may be advantageous in functional electrical stimulation applications.


Sign in / Sign up

Export Citation Format

Share Document