K-THEORY FOR THE REDUCED C-ALGEBRA OF A SEMI-SIMPLE LIE GROUP WITH REAL RANK 1 AND FINITE CENTRE

1984 ◽  
Vol 35 (3) ◽  
pp. 341-359 ◽  
Author(s):  
ALAIN VALETTE
Keyword(s):  
2016 ◽  
Vol 59 (2) ◽  
pp. 435-439
Author(s):  
Hongliang Yao

AbstractFor any C*-algebra A with an approximate unit of projections, there is a smallest ideal I of A such that the quotient A/I is stably finite. In this paper a sufficient and necessary condition for an ideal of a C*-algebra with real rank zero to be this smallest ideal is obtained by using K-theory


Author(s):  
Sara E. Arklint ◽  
Rasmus Bentmann ◽  
Takeshi Katsura

AbstractWe show that filtered K-theory is equivalent to a substantially smaller invariant for all real-rank-zero C*-algebras with certain primitive ideal spaces—including the infinitely many so-called accordion spaces for which filtered K-theory is known to be a complete invariant. As a consequence, we give a characterization of purely infinite Cuntz–Krieger algebras whose primitive ideal space is an accordion space.


Author(s):  
Francis Clarke

Let G be a simply connected, semi-simple, compact Lie group, let K* denote Z/2-graded, representable K-theory, and K* the corresponding homology theory. The K-theory of G and of its classifying space BG are well known, (8),(1). In contrast with ordinary cohomology, K*(G) and K*(BG) are torsion-free and have simple multiplicative structures. If ΩG denotes the space of loops on G, it seems natural to conjecture that K*(ΩG) should have, in some sense, a more simple structure than H*(ΩG).


2004 ◽  
Vol 56 (6) ◽  
pp. 1237-1258 ◽  
Author(s):  
Akitaka Kishimoto

AbstractWe are concerned with a unital separable nuclear purely infinite simple C*-algebra A satisfying UCT with a Rohlin flow, as a continuation of [12]. Our first result (which is independent of the Rohlin flow) is to characterize when two central projections in A are equivalent by a central partial isometry. Our second result shows that the K-theory of the central sequence algebra A′ ∩ Aω (for an ω ∈ βN\N) and its fixed point algebra under the flow are the same (incorporating the previous result). We will also complete and supplement the characterization result of the Rohlin property for flows stated in [12].


1988 ◽  
Vol 31 (2) ◽  
pp. 194-199
Author(s):  
L. Magalhães

AbstractIn this paper we give a description of:(1) the Hopf algebra structure of k*(G; L) when G is a compact, connected Lie group and L is a ring of type Q(P) so that H*(G; L) is torsion free;(2) the algebra structure of k*(G2; L) for L = Z2 or Z.


1972 ◽  
Vol 24 (5) ◽  
pp. 819-824
Author(s):  
C. M. Naylor

The β-construction assigns to each complex representation φ of the compact Lie group G a unique element β(φ) in (G). For the details of this construction the reader is referred to [1] or [5]. The purpose of the present paper is to determine some of the properties of the element β(φ) in terms of the invariants of the representation φ. More precisely, we consider the following question. Let G be a simple, simply-connected compact Lie group and let f : S3 →G be a Lie group homomorphism. Then (S3) ⋍ Z with generator x = β(φ1), φ1 the fundamental representation of S3 , so that if φ is a representation of G,f*(φ) = n(φ)x, where n(φ) is an integer depending on φ and f . The problem is to determine n(φ).Since G is simple and simply-connected we may assume that ch2, the component of the Chern character in dimension 4 takes its values in H4(SG,Z)≅Z. Let u be a generator of H4(SG,Z) so that ch2(β (φ)) = m(φ)u, m(φ) an integer depending on φ.


2015 ◽  
Vol 269 (9) ◽  
pp. 2995-3041 ◽  
Author(s):  
Pere Ara ◽  
Ruy Exel
Keyword(s):  

2012 ◽  
Vol 64 (2) ◽  
pp. 368-408 ◽  
Author(s):  
Ralf Meyer ◽  
Ryszard Nest

AbstractWe define the filtrated K-theory of a C*-algebra over a finite topological spaceXand explain how to construct a spectral sequence that computes the bivariant Kasparov theory overXin terms of filtrated K-theory.For finite spaces with a totally ordered lattice of open subsets, this spectral sequence becomes an exact sequence as in the Universal Coefficient Theorem, with the same consequences for classification. We also exhibit an example where filtrated K-theory is not yet a complete invariant. We describe two C*-algebras over a spaceXwith four points that have isomorphic filtrated K-theory without being KK(X)-equivalent. For this spaceX, we enrich filtrated K-theory by another K-theory functor to a complete invariant up to KK(X)-equivalence that satisfies a Universal Coefficient Theorem.


2019 ◽  
Vol 52 (1) ◽  
pp. 410-427
Author(s):  
Andrea C. Antunez

AbstractLet 𝒜 be a unital C*-algebra with a faithful state ϕ. We study the geometry of the unit sphere 𝕊ϕ = {x ∈ 𝒜 : ϕ(x*x) = 1} and the projective space ℙϕ = 𝕊ϕ/𝕋. These spaces are shown to be smooth manifolds and homogeneous spaces of the group 𝒰ϕ(𝒜) of isomorphisms acting in 𝒜 which preserve the inner product induced by ϕ, which is a smooth Banach-Lie group. An important role is played by the theory of operators in Banach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric in ℙϕ, and prove the existence of minimal geodesics, both with given initial data, and given endpoints.


Sign in / Sign up

Export Citation Format

Share Document