scholarly journals Low Pseudomoments of Euler Products

Author(s):  
Maxim Gerspach ◽  
Youness Lamzouri

Abstract In this paper, we determine the order of magnitude of the 2 q-th pseudomoment of powers of the Riemann zeta function $\zeta(s)^{\alpha}$ for $0 \lt q\le 1/2$ and $0 \lt \alpha \lt 1$, completing the results of Bondarenko, Heap and Seip, and Gerspach. Our results also apply to more general Euler products satisfying certain conditions.


2018 ◽  
Vol Volume 40 ◽  
Author(s):  
William D. Banks

International audience We give a new proof that the Riemann zeta function is nonzero in the half-plane {s ∈ C : σ > 1}. A novel feature of this proof is that it makes no use of the Euler product for ζ(s).



Author(s):  
Maxim Gerspach

Abstract The $2 q$-th pseudomoment $\Psi _{2q,\alpha }(x)$ of the $\alpha $-th power of the Riemann zeta function is defined to be the $2 q$-th moment of the partial sum up to $x$ of $\zeta ^\alpha $ on the critical line. Using probabilistic methods of Harper, we prove upper and lower bounds for these pseudomoments when $q \le \frac{1}{2}$ and $\alpha \ge 1$. Combined with results of Bondarenko et al., these bounds determine the size of all pseudomoments with $q> 0$ and $\alpha \ge 1$ up to powers of $\log \log x$, where $x$ is the length of the partial sum, and it turns out that there are three different ranges with different growth behaviours. In particular, the results give the order of magnitude of $\Psi _{2 q, 1}(x)$ for all $q> 0$.



2005 ◽  
Vol 01 (03) ◽  
pp. 401-429
Author(s):  
MASATOSHI SUZUKI

As automorphic L-functions or Artin L-functions, several classes of L-functions have Euler products and functional equations. In this paper we study the zeros of L-functions which have Euler products and functional equations. We show that there exists a relation between the zeros of the Riemann zeta-function and the zeros of such L-functions. As a special case of our results, we find relations between the zeros of the Riemann zeta-function and the zeros of automorphic L-functions attached to elliptic modular forms or the zeros of Rankin–Selberg L-functions attached to two elliptic modular forms.



Author(s):  
José A. Adell

Let ( γ n ) n ≥ 0 be the sequence of Stieltjes constants appearing in the Laurent expansion of the Riemann zeta function. We obtain explicit upper bounds for | γ n |, whose order of magnitude is as n tends to infinity. To do this, we use a probabilistic approach based on a differential calculus for the gamma process.



2020 ◽  
Author(s):  
Siamak Tafazoli

This paper presents a new estimate for the vacuum energy density by summing the contributions of all quantum fields' vacuum states which turns out to be in the same order of magnitude (but with opposite sign) as the predictions of current cosmological models and all observational data to date. The basis for this estimate is the recent results on the analytical solution to improper integral of divergent power functions using the Riemann Zeta function.



2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Jay Mehta ◽  
P. -Y Zhu

In this article, we shall prove a result which enables us to transfer from finite to infinite Euler products. As an example, we give two new proofs of the infinite product for the sine function depending on certain decompositions. We shall then prove some equivalent expressions for the functional equation, i.e. the partial fraction expansion and the integral expression involving the generating function for Bernoulli numbers. The equivalence of the infinite product for the sine functions and the partial fraction expansion for the hyperbolic cotangent function leads to a new proof of the functional equation for the Riemann zeta function.



Analysis ◽  
2006 ◽  
Vol 26 (3) ◽  
Author(s):  
Rasa Steuding

In the paper, following ideas of Bohr and Bagchi, we present a new equivalent formulation of the Riemann hypothesis for the Riemann zeta-function ζ(



2019 ◽  
Vol 210 (12) ◽  
pp. 1753-1773 ◽  
Author(s):  
A. Laurinčikas ◽  
J. Petuškinaitė


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
WonTae Hwang ◽  
Kyunghwan Song

Abstract We prove that the integer part of the reciprocal of the tail of $\zeta (s)$ ζ ( s ) at a rational number $s=\frac{1}{p}$ s = 1 p for any integer with $p \geq 5$ p ≥ 5 or $s=\frac{2}{p}$ s = 2 p for any odd integer with $p \geq 5$ p ≥ 5 can be described essentially as the integer part of an explicit quantity corresponding to it. To deal with the case when $s=\frac{2}{p}$ s = 2 p , we use a result on the finiteness of integral points of certain curves over $\mathbb{Q}$ Q .



Sign in / Sign up

Export Citation Format

Share Document