scholarly journals Quantum Cohomology and Closed-String Mirror Symmetry for Toric Varieties

2020 ◽  
Vol 71 (2) ◽  
pp. 395-438
Author(s):  
Jack Smith

Abstract We give a short new computation of the quantum cohomology of an arbitrary smooth (semiprojective) toric variety $X$, by showing directly that the Kodaira–Spencer map of Fukaya–Oh–Ohta–Ono defines an isomorphism onto a suitable Jacobian ring. In contrast to previous results of this kind, $X$ need not be compact. The proof is based on the purely algebraic fact that a class of generalized Jacobian rings associated to $X$ are free as modules over the Novikov ring. When $X$ is monotone the presentation we obtain is completely explicit, using only well-known computations with the standard complex structure.

1995 ◽  
Vol 440 (1-2) ◽  
pp. 279-354 ◽  
Author(s):  
David R. Morrison ◽  
M.Ronen Plesser

Author(s):  
Ugo Bruzzo ◽  
William D. Montoya

AbstractFor a quasi-smooth hypersurface X in a projective simplicial toric variety $$\mathbb {P}_{\Sigma }$$ P Σ , the morphism $$i^*:H^p(\mathbb {P}_{\Sigma })\rightarrow H^p(X)$$ i ∗ : H p ( P Σ ) → H p ( X ) induced by the inclusion is injective for $$p=\dim X$$ p = dim X and an isomorphism for $$p<\dim X-1$$ p < dim X - 1 . This allows one to define the Noether–Lefschetz locus $$\mathrm{NL}_{\beta }$$ NL β as the locus of quasi-smooth hypersurfaces of degree $$\beta $$ β such that $$i^*$$ i ∗ acting on the middle algebraic cohomology is not an isomorphism. We prove that, under some assumptions, if $$\dim \mathbb {P}_{\Sigma }=2k+1$$ dim P Σ = 2 k + 1 and $$k\beta -\beta _0=n\eta $$ k β - β 0 = n η , $$n\in \mathbb {N}$$ n ∈ N , where $$\eta $$ η is the class of a 0-regular ample divisor, and $$\beta _0$$ β 0 is the anticanonical class, every irreducible component V of the Noether–Lefschetz locus quasi-smooth hypersurfaces of degree $$\beta $$ β satisfies the bounds $$n+1\leqslant \mathrm{codim}\,Z \leqslant h^{k-1,\,k+1}(X)$$ n + 1 ⩽ codim Z ⩽ h k - 1 , k + 1 ( X ) .


Author(s):  
Ugo Bruzzo ◽  
William Montoya

AbstractWe establish the Hodge conjecture for some subvarieties of a class of toric varieties. First we study quasi-smooth intersections in a projective simplicial toric variety, which is a suitable notion to generalize smooth complete intersection subvarieties in the toric environment, and in particular quasi-smooth hypersurfaces. We show that under appropriate conditions, the Hodge conjecture holds for a very general quasi-smooth intersection subvariety, generalizing the work on quasi-smooth hypersurfaces of the first author and Grassi in Bruzzo and Grassi (Commun Anal Geom 28: 1773–1786, 2020). We also show that the Hodge Conjecture holds asymptotically for suitable quasi-smooth hypersurface in the Noether–Lefschetz locus, where “asymptotically” means that the degree of the hypersurface is big enough, under the assumption that the ambient variety $${{\mathbb {P}}}_\Sigma ^{2k+1}$$ P Σ 2 k + 1 has Picard group $${\mathbb {Z}}$$ Z . This extends to a class of toric varieties Otwinowska’s result in Otwinowska (J Alg Geom 12: 307–320, 2003).


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


10.37236/5038 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Laura Escobar

Bott-Samelson varieties are a twisted product of $\mathbb{C}\mathbb{P}^1$'s with a map into $G/B$. These varieties are mostly studied in the case in which the map into $G/B$ is birational to the image; however in this paper we study a fiber of this map when it is not birational. We prove that in some cases the general fiber, which we christen a brick manifold, is a toric variety. In order to do so we use the moment map of a Bott-Samelson variety to translate this problem into one in terms of the "subword complexes" of Knutson and Miller. Pilaud and Stump realized certain subword complexes as the dual of the boundary of a polytope which generalizes the brick polytope defined by Pilaud and Santos. For a nice family of words, the brick polytope is the generalized associahedron realized by Hohlweg, Lange and Thomas. These stories connect in a nice way: we show that the moment polytope of the brick manifold is the brick polytope. In particular, we give a nice description of the toric variety of the associahedron. We give each brick manifold a stratification dual to the subword complex. In addition, we relate brick manifolds to Brion's resolutions of Richardon varieties.


2015 ◽  
Vol 30 (03) ◽  
pp. 1530018
Author(s):  
Michael R. Douglas

We survey some of the basic mathematical ideas and techniques which are used in string phenomenology, such as constructions of Calabi–Yau manifolds, singularities and orbifolds, toric geometry, variation of complex structure, and mirror symmetry.


2020 ◽  
Vol 156 (10) ◽  
pp. 2149-2206
Author(s):  
Lara Bossinger ◽  
Bosco Frías-Medina ◽  
Timothy Magee ◽  
Alfredo Nájera Chávez

We introduce the notion of a $Y$-pattern with coefficients and its geometric counterpart: an $\mathcal {X}$-cluster variety with coefficients. We use these constructions to build a flat degeneration of every skew-symmetrizable specially completed $\mathcal {X}$-cluster variety $\widehat {\mathcal {X} }$ to the toric variety associated to its g-fan. Moreover, we show that the fibers of this family are stratified in a natural way, with strata the specially completed $\mathcal {X}$-varieties encoded by $\operatorname {Star}(\tau )$ for each cone $\tau$ of the $\mathbf {g}$-fan. These strata degenerate to the associated toric strata of the central fiber. We further show that the family is cluster dual to $\mathcal {A}_{\mathrm {prin}}$ of Gross, Hacking, Keel and Kontsevich [Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497–608], and the fibers cluster dual to $\mathcal {A} _t$. Finally, we give two applications. First, we use our construction to identify the toric degeneration of Grassmannians from Rietsch and Williams [Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J. 168 (2019), 3437–3527] with the Gross–Hacking–Keel–Kontsevich degeneration in the case of $\operatorname {Gr}_2(\mathbb {C} ^{5})$. Next, we use it to link cluster duality to Batyrev–Borisov duality of Gorenstein toric Fanos in the context of mirror symmetry.


Sign in / Sign up

Export Citation Format

Share Document