scholarly journals CONCEPTUAL DESIGN AND PRELIMINARY RESULTS OF A VR-BASED RADIATION SAFETY TRAINING SYSTEM FOR INTERVENTIONAL RADIOLOGISTS

2020 ◽  
Vol 190 (1) ◽  
pp. 58-65
Author(s):  
Yi Guo ◽  
Li Mao ◽  
Gongsen Zhang ◽  
Zhi Chen ◽  
Xi Pei ◽  
...  

Abstract To help minimise occupational radiation exposure in interventional radiology, we conceptualised a virtual reality-based radiation safety training system to help operators understand complex radiation fields and to avoid high radiation areas through game-like interactive simulations. The preliminary development of the system has yielded results suggesting that the training system can calculate and report the radiation exposure after each training session based on a database precalculated from computational phantoms and Monte Carlo simulations and the position information provided by the Microsoft HoloLens headset. In addition, real-time dose rate and cumulative dose will be displayed to the trainee to help them adjust their practice. This paper presents the conceptual design of the overall hardware and software design, as well as preliminary results to combine HoloLens headset and complex 3D X-ray field spatial distribution data to create a mixed reality environment for safety training purpose in interventional radiology.

2015 ◽  
Vol 474 (2) ◽  
pp. 580-584 ◽  
Author(s):  
David Gendelberg ◽  
William Hennrikus ◽  
Jennifer Slough ◽  
Douglas Armstrong ◽  
Steven King

Orthopedics ◽  
2017 ◽  
Vol 40 (5) ◽  
pp. e788-e792 ◽  
Author(s):  
David Gendelberg ◽  
William L. Hennrikus ◽  
Carissa Sawyer ◽  
Douglas Armstrong ◽  
Steven King

2011 ◽  
pp. 1600-1623
Author(s):  
Michael Haller

This chapter introduces a component-oriented approach for developing mixed reality (MR) applications. After a short definition of mixed reality, we present two possible solutions for a component-oriented framework. Both solutions have been implemented in two different MR projects (SAVE and AMIRE). The first project, SAVE, is a safety training system for virtual environments, whereas the goal of the AMIRE project is to develop different authoring tools for mixed reality applications. A component-oriented solution allows developers to implement better designed MR applications, and it fosters the reusability of existing MR software solutions (often called MR gems). Finally, it supports the implementation of adequate visual authoring tools that help end users to develop their own MR applications with no programming skills.


Author(s):  
Michael Haller

This chapter introduces a component-oriented approach for developing mixed reality (MR) applications. After a short definition of mixed reality, we present two possible solutions for a component-oriented framework. Both solutions have been implemented in two different MR projects (SAVE and AMIRE). The first project, SAVE, is a safety training system for virtual environments, whereas the goal of the AMIRE project is to develop different authoring tools for mixed reality applications. A component-oriented solution allows developers to implement better designed MR applications, and it fosters the reusability of existing MR software solutions (often called MR gems). Finally, it supports the implementation of adequate visual authoring tools that help end users to develop their own MR applications with no programming skills.


2021 ◽  
Vol 45 (4) ◽  
Author(s):  
Takeshi Takata ◽  
Susumu Nakabayashi ◽  
Hiroshi Kondo ◽  
Masayoshi Yamamoto ◽  
Shigeru Furui ◽  
...  

AbstractFor interventional radiology, dose management has persisted as a crucially important issue to reduce radiation exposure to patients and medical staff. This study designed a real-time dose visualization system for interventional radiology designed with mixed reality technology and Monte Carlo simulation. An earlier report described a Monte-Carlo-based estimation system, which simulates a patient’s skin dose and air dose distributions, adopted for our system. We also developed a system of acquiring fluoroscopic conditions to input them into the Monte Carlo system. Then we combined the Monte Carlo system with a wearable device for three-dimensional holographic visualization. The estimated doses were transferred sequentially to the device. The patient’s dose distribution was then projected on the patient body. The visualization system also has a mechanism to detect one’s position in a room to estimate the user’s exposure dose to detect and display the exposure level. Qualitative tests were conducted to evaluate the workload and usability of our mixed reality system. An end-to-end system test was performed using a human phantom. The acquisition system accurately recognized conditions that were necessary for real-time dose estimation. The dose hologram represents the patient dose. The user dose was changed correctly, depending on conditions and positions. The perceived overall workload score (33.50) was lower than the scores reported in the literature for medical tasks (50.60) for computer activities (54.00). Mixed reality dose visualization is expected to improve exposure dose management for patients and health professionals by exhibiting the invisible radiation exposure in real space.


Author(s):  
S Leinster-Evans ◽  
J Newell ◽  
S Luck

This paper looks to expand on the INEC 2016 paper ‘The future role of virtual reality within warship support solutions for the Queen Elizabeth Class aircraft carriers’ presented by Ross Basketter, Craig Birchmore and Abbi Fisher from BAE Systems in May 2016 and the EAAW VII paper ‘Testing the boundaries of virtual reality within ship support’ presented by John Newell from BAE Systems and Simon Luck from BMT DSL in June 2017. BAE Systems and BMT have developed a 3D walkthrough training system that supports the teams working closely with the QEC Aircraft Carriers in Portsmouth and this work was presented at EAAW VII. Since then this work has been extended to demonstrate the art of the possible on Type 26. This latter piece of work is designed to explore the role of 3D immersive environments in the development and fielding of support and training solutions, across the range of support disciplines. The combined team are looking at how this digital thread leads from design of platforms, both surface and subsurface, through build into in-service support and training. This rich data and ways in which it could be used in the whole lifecycle of the ship, from design and development (used for spatial acceptance, HazID, etc) all the way through to operational support and maintenance (in conjunction with big data coming off from the ship coupled with digital tech docs for maintenance procedures) using constantly developing technologies such as 3D, Virtual Reality, Augmented Reality and Mixed Reality, will be proposed.  The drive towards gamification in the training environment to keep younger recruits interested and shortening course lengths will be explored. The paper develops the options and looks to how this technology can be used and where the value proposition lies. 


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 443
Author(s):  
Hongbo Liang ◽  
Shota Maedono ◽  
Yingxin Yu ◽  
Chang Liu ◽  
Naoya Ueda ◽  
...  

Electroencephalography neurofeedback (EEG-NFB) training can induce changes in the power of targeted EEG bands. The objective of this study is to enhance and evaluate the specific changes of EEG power spectral density that the brain-machine interface (BMI) users can reliably generate for power augmentation through EEG-NFB training. First, we constructed an EEG-NFB training system for power augmentation. Then, three subjects were assigned to three NFB training stages, based on a 6-day consecutive training session as one stage. The subjects received real-time feedback from their EEG signals by a robotic arm while conducting flexion and extension movement with their elbow and shoulder joints, respectively. EEG signals were compared with each NFB training stage. The training results showed that EEG beta (12–40 Hz) power increased after the NFB training for both the elbow and the shoulder joints’ movements. EEG beta power showed sustained improvements during the 3-stage training, which revealed that even the short-term training could improve EEG signals significantly. Moreover, the training effect of the shoulder joints was more obvious than that of the elbow joints. These results suggest that NFB training can improve EEG signals and clarify the specific EEG changes during the movement. Our results may even provide insights into how the neural effects of NFB can be better applied to the BMI power augmentation system and improve the performance of healthy individuals.


Sign in / Sign up

Export Citation Format

Share Document