scholarly journals 1057 Evaluating Differences In Upper Airway Anatomy Between Diabetic And Non-diabetic OSA Patients

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A401-A402
Author(s):  
N Ihemeremadu ◽  
N Lavi-Romer ◽  
Y Zang ◽  
B Keenan ◽  
R Schwab

Abstract Introduction Studies show that OSA is linked to impaired glucose tolerance, insulin resistance, and the onset of diabetes. We hypothesized that diabetic OSA patients will have higher apnea-hypopnea index (AHI) values than OSA patients without diabetes after adjusting for age and body mass index (BMI) and that this difference can be explained through increases in upper airway structures between diabetic and non-diabetic OSA patients. Methods This study evaluated differences in upper airway and craniofacial dimensions and volume of the pharyngeal soft tissues between diabetic and non-diabetic patients with obstructive sleep apnea (OSA) using magnetic resonance imaging (MRI). Airway sizes, soft tissue volumes and craniofacial dimensions were quantified using three-dimensional MRI in OSA patients without diabetes (n=237) and OSA patients with diabetes (n=64). Comparisons in upper airway measures among diabetics and non-diabetics were performed using linear regression models controlling for age, sex, BMI, race, and AHI. Results Among study participants, diabetic OSA patients were older than non-diabetic OSA patients (54.2±10.1 vs. 47.3±11.1 years; p<0.0001). No significant differences were found between diabetic and non-diabetic OSA patients with respect to BMI (39.8±7.0 vs. 38.4±8.8 kg/m2; p=0.207) or AHI (45.0±31.0 vs. 38.8±27.8 events/hour; p=0.154). In covariate adjusted models, non-diabetic OSA patients also had smaller RP minimum airway area (adjusted difference [95% CI] = -3119 [-5359, 879] mm2; p=0.0066) and RP minimum AP distance (-16.0 mm [-29.6, -2.5]; p=0.021) compared to diabetic OSA patients. No differences were observed in soft tissue volumes or craniofacial dimensions. Conclusion While diabetics had higher average AHI, we observed no significant differences in AHI between diabetic and non-diabetic patients with sleep apnea. In general, upper airway anatomy was similar between diabetic and non-diabetics apneics, controlling for demographic factors and AHI. Future studies should examine dynamic changes, in addition to static upper airway anatomy, in diabetic and non-diabetics apneics. Support  

SLEEP ◽  
2019 ◽  
Vol 43 (5) ◽  
Author(s):  
Liyue Xu ◽  
Brendan T Keenan ◽  
Andrew S Wiemken ◽  
Luqi Chi ◽  
Bethany Staley ◽  
...  

Abstract Study Objectives This study evaluated differences in upper airway, soft tissues and craniofacial structures between Asians from China and Europeans from Iceland with OSA using three-dimensional magnetic resonance imaging (MRI). Methods Airway sizes, soft tissue volumes, and craniofacial dimensions were compared between Icelandic (N = 108) and Chinese (N = 57) patients with oxygen desaturation index (ODI) ≥ 10 events/h matched for age, gender, and ODI. Mixed effects models adjusting for height or BMI and residual differences in age and ODI were utilized. Results In our matched sample, compared to Icelandic OSA patients, Chinese patients had smaller BMI (p < 0.0001) and neck circumference (p = 0.011). In covariate adjusted analyses, Chinese showed smaller retropalatal airway size (p ≤ 0.002), and smaller combined soft tissues, tongue, fat pads, and pterygoid (all p ≤ 0.0001), but male Chinese demonstrated a larger soft palate volume (p ≤ 0.001). For craniofacial dimensions, Chinese demonstrated bigger ANB angle (p ≤ 0.0196), differently shaped mandibles, including shorter corpus length (p < 0.0001) but longer ramus length (p < 0.0001), and a wider (p < 0.0001) and shallower (p ≤ 0.0001) maxilla. Conclusions Compared to Icelandic patients of similar age, gender and ODI, Chinese patients had smaller retropalatal airway and combined soft tissue, but bigger soft palate volume (in males), and differently shaped mandible and maxilla with more bony restrictions. Results support an ethnic difference in upper airway anatomy related to OSA, which may inform targeted therapies.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Huiping Luo ◽  
Austin Scholp ◽  
Jack J. Jiang

Objectives. To investigate the snoring modes of patients with Obstructive Sleep Apnea Hypopnea Syndrome and to discover the main sources of snoring in soft tissue vibrations. Methods. A three-dimensional finite element model was developed with SolidEdge to simulate the human upper airway. The inherent modal simulation was conducted to obtain the frequencies and the corresponding shapes of the soft tissue vibrations. The respiration process was simulated with the fluid-solid interaction method through ANSYS. Results. The first 6 orders of modal vibration were 12 Hz, 18 Hz, 21 Hz, 22 Hz, 36 Hz, and 39 Hz. Frequencies of modes 1, 2, 4, and 5 were from tongue vibrations. Frequencies of modes 3 and 6 were from soft palate vibrations. Steady pressure distribution and air distribution lines in the upper airway were shown clearly in the fluid-solid interaction simulation results. Conclusions. We were able to observe the vibrations of soft tissue and the modeled airflow by applying the finite element methods. Future studies could focus on improving the soft tissues vibration compliances by adjusting the model parameters. Additionally, more attention should be paid to vibrational components below 20 Hz when performing an acoustic analysis of human snore sounds due to the presence of these frequencies in this model.


2016 ◽  
Vol 21 ◽  
pp. 19-27 ◽  
Author(s):  
Hui Chen ◽  
Ghizlane Aarab ◽  
Maurits H.T. de Ruiter ◽  
Jan de Lange ◽  
Frank Lobbezoo ◽  
...  

ORL ◽  
2021 ◽  
pp. 1-8
Author(s):  
Lifeng Li ◽  
Demin Han ◽  
Hongrui Zang ◽  
Nyall R. London

<b><i>Objective:</i></b> The purpose of this study was to evaluate the effects of nasal surgery on airflow characteristics in patients with obstructive sleep apnea (OSA) by comparing the alterations of airflow characteristics within the nasal and palatopharyngeal cavities. <b><i>Methods:</i></b> Thirty patients with OSA and nasal obstruction who underwent nasal surgery were enrolled. A pre- and postoperative 3-dimensional model was constructed, and alterations of airflow characteristics were assessed using the method of computational fluid dynamics. The other subjective and objective clinical indices were also assessed. <b><i>Results:</i></b> By comparison with the preoperative value, all postoperative subjective symptoms statistically improved (<i>p</i> &#x3c; 0.05), while the Apnea-Hypopnea Index (AHI) changed little (<i>p</i> = 0.492); the postoperative airflow velocity and pressure in both nasal and palatopharyngeal cavities, nasal and palatopharyngeal pressure differences, and total upper airway resistance statistically decreased (all <i>p</i> &#x3c; 0.01). A significant difference was derived for correlation between the alteration of simulation metrics with subjective improvements (<i>p</i> &#x3c; 0.05), except with the AHI (<i>p</i> &#x3e; 0.05). <b><i>Conclusion:</i></b> Nasal surgery can decrease the total resistance of the upper airway and increase the nasal airflow volume and subjective sleep quality in patients with OSA and nasal obstruction. The altered airflow characteristics might contribute to the postoperative reduction of pharyngeal collapse in a subset of OSA patients.


Author(s):  
Goutham Mylavarapu ◽  
Ephraim Gutmark ◽  
Sally Shott ◽  
Robert J. Fleck ◽  
Mohamed Mahmoud ◽  
...  

Surgical treatment of obstructive sleep apnea (OSA) in children requires knowledge of upper airway dynamics, including the closing pressure (Pcrit), a measure of airway collapsibility. We applied a Flow-Structure Interaction (FSI) computational model to estimate Pcrit in patient-specific upper airway models obtained from magnetic resonance imaging (MRI) scans. We sought to examine the agreement between measured and estimated Pcrit from FSI models in children with Down syndrome. We hypothesized that the estimated Pcrit would accurately reflect measured Pcrit during sleep and therefore reflect the severity of OSA as measured by the obstructive apnea hypopnea index (AHI). All participants (n=41) underwent polysomnography and sedated sleep MRI scans. We used Bland Altman Plots to examine the agreement between measured and estimated Pcrit. We determined associations between estimated Pcrit and OSA severity, as measured by AHI, using regression models. The agreement between passive and estimated Pcrit showed a fixed bias of -1.31 (CI=-2.78, 0.15) and a non-significant proportional bias. A weaker agreement with active Pcrit was observed. A model including AHI, gender, an interaction term for AHI and gender and neck circumference explained the largest variation (R2 = 0.61) in the relationship between AHI and estimated Pcrit. (P <0.0001). Overlap between the areas of the airway with lowest stiffness, and areas of collapse on dynamic MRI, was 77.4%±30% for the nasopharyngeal region and 78.6%±33% for the retroglossal region. The agreement between measured and estimated Pcrit and the significant association with AHI supports the validity of Pcrit estimates from the FSI model.


SLEEP ◽  
2020 ◽  
Vol 43 (10) ◽  
Author(s):  
Amal M Osman ◽  
Benjamin K Tong ◽  
Shane A Landry ◽  
Bradley A Edwards ◽  
Simon A Joosten ◽  
...  

Abstract Study Objectives Quantification of upper airway collapsibility in obstructive sleep apnea (OSA) could help inform targeted therapy decisions. However, current techniques are clinically impractical. The primary aim of this study was to assess if a simple, novel technique could be implemented as part of a continuous positive airway pressure (CPAP) titration study to assess pharyngeal collapsibility. Methods A total of 35 participants (15 female) with OSA (mean ± SD apnea–hypopnea index = 35 ± 19 events/h) were studied. Participants first completed a simple clinical intervention during a routine CPAP titration, where CPAP was transiently turned off from the therapeutic pressure for ≤5 breaths/efforts on ≥5 occasions during stable non-rapid eye movement (non-REM) sleep for quantitative assessment of airflow responses (%peak inspiratory flow [PIF] from preceding 5 breaths). Participants then underwent an overnight physiology study to determine the pharyngeal critical closing pressure (Pcrit) and repeat transient drops to zero CPAP to assess airflow response reproducibility. Results Mean PIF of breaths 3–5 during zero CPAP on the simple clinical intervention versus the physiology night were similar (34 ± 29% vs. 28 ± 30% on therapeutic CPAP, p = 0.2; range 0%–90% vs. 0%–95%). Pcrit was −1.0 ± 2.5 cmH2O (range −6 to 5 cmH2O). Mean PIF during zero CPAP on the simple clinical intervention and the physiology night correlated with Pcrit (r = −0.7 and −0.9, respectively, p &lt; 0.0001). Receiver operating characteristic curve analysis indicated significant diagnostic utility for the simple intervention to predict Pcrit &lt; −2 and &lt; 0 cmH2O (AUC = 0.81 and 0.92), respectively. Conclusions A simple CPAP intervention can successfully discriminate between patients with and without mild to moderately collapsible pharyngeal airways. This scalable approach may help select individuals most likely to respond to non-CPAP therapies.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Fernando Espinoza-Cuadros ◽  
Rubén Fernández-Pozo ◽  
Doroteo T. Toledano ◽  
José D. Alcázar-Ramírez ◽  
Eduardo López-Gonzalo ◽  
...  

Obstructive sleep apnea (OSA) is a common sleep disorder characterized by recurring breathing pauses during sleep caused by a blockage of the upper airway (UA). OSA is generally diagnosed through a costly procedure requiring an overnight stay of the patient at the hospital. This has led to proposing less costly procedures based on the analysis of patients’ facial images and voice recordings to help in OSA detection and severity assessment. In this paper we investigate the use of both image and speech processing to estimate the apnea-hypopnea index, AHI (which describes the severity of the condition), over a population of 285 male Spanish subjects suspected to suffer from OSA and referred to a Sleep Disorders Unit. Photographs and voice recordings were collected in a supervised but not highly controlled way trying to test a scenario close to an OSA assessment application running on a mobile device (i.e., smartphones or tablets). Spectral information in speech utterances is modeled by a state-of-the-art low-dimensional acoustic representation, called i-vector. A set of local craniofacial features related to OSA are extracted from images after detecting facial landmarks using Active Appearance Models (AAMs). Support vector regression (SVR) is applied on facial features and i-vectors to estimate the AHI.


2019 ◽  
Vol 24 (01) ◽  
pp. e107-e111 ◽  
Author(s):  
José Antonio Pinto ◽  
Luciana Balester Mello de Godoy ◽  
Heloisa dos Santos Sobreira Nunes ◽  
Kelly Elia Abdo ◽  
Gabriella Spinola Jahic ◽  
...  

Abstract Introduction Obstructive sleep apnea syndrome (OSAS) is a multifactorial disease characterized by episodes of partial or complete collapse during sleep of different regions of the upper airway. Surgery for OSAS evolved with the introduction of different techniques, considering new surgical concept of reconstruction of the upper airway. Objective To retrospectively evaluate the effectiveness of a new approach aimed at reducing pharyngeal collapse by combining two surgical techniques: lateral and expansion pharyngoplasty. Methods We reviewed the medical records of 38 patients with OSAS undergoing lateral/expansion pharyngoplasty from January 2012 to December 2016. The following data were collected: patient age, gender, and pre- and postoperative body mass index (BMI), Epworth sleepiness scale (ESS) scores, snoring visual analogue scale (VAS) scores, and polysomnography (PSG) results. Results The PSG results showed a significant reduction in the apnea/hypopnea index (AHI) from 22.4 ± 27.3 events/h preoperatively to 13.6 ± 17.9 events/h postoperatively (p = 0.009), with postoperative AHI reduction greater than 50% in 63.2% of the patients. There was also a significant reduction in the microarousal index (19.5 ± 22.6 vs 11.0 ± 13.4 events/h; p = 0.001) and in the minimum oxygen saturation (82.6 ± 10.3 vs 86.9 ± 11.1; p = 0.007). Conclusions Lateral-expansion pharyngoplasty represents a new surgical strategy for the treatment of OSAS in patients with palatal collapse by combining two different techniques: lateral and expansion pharyngoplasty. The two techniques, performed as a one-stage procedure, led to improvements in excessive daytime sleepiness, snoring, and PSG respiratory parameters by acting on lateral and retropalatal collapse, producing favorable results with good applicability in otolaryngology clinical practice.


Sign in / Sign up

Export Citation Format

Share Document