Accounting for Uncertainty in the Evolutionary Timescale of Green Plants Through Clock-Partitioning and Fossil Calibration Strategies

2019 ◽  
Vol 69 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Yuan Nie ◽  
Charles S P Foster ◽  
Tianqi Zhu ◽  
Ru Yao ◽  
David A Duchêne ◽  
...  

Abstract Establishing an accurate evolutionary timescale for green plants (Viridiplantae) is essential to understanding their interaction and coevolution with the Earth’s climate and the many organisms that rely on green plants. Despite being the focus of numerous studies, the timing of the origin of green plants and the divergence of major clades within this group remain highly controversial. Here, we infer the evolutionary timescale of green plants by analyzing 81 protein-coding genes from 99 chloroplast genomes, using a core set of 21 fossil calibrations. We test the sensitivity of our divergence-time estimates to various components of Bayesian molecular dating, including the tree topology, clock models, clock-partitioning schemes, rate priors, and fossil calibrations. We find that the choice of clock model affects date estimation and that the independent-rates model provides a better fit to the data than the autocorrelated-rates model. Varying the rate prior and tree topology had little impact on age estimates, with far greater differences observed among calibration choices and clock-partitioning schemes. Our analyses yield date estimates ranging from the Paleoproterozoic to Mesoproterozoic for crown-group green plants, and from the Ediacaran to Middle Ordovician for crown-group land plants. We present divergence-time estimates of the major groups of green plants that take into account various sources of uncertainty. Our proposed timeline lays the foundation for further investigations into how green plants shaped the global climate and ecosystems, and how embryophytes became dominant in terrestrial environments.

2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i884-i894
Author(s):  
Jose Barba-Montoya ◽  
Qiqing Tao ◽  
Sudhir Kumar

Abstract Motivation As the number and diversity of species and genes grow in contemporary datasets, two common assumptions made in all molecular dating methods, namely the time-reversibility and stationarity of the substitution process, become untenable. No software tools for molecular dating allow researchers to relax these two assumptions in their data analyses. Frequently the same General Time Reversible (GTR) model across lineages along with a gamma (+Γ) distributed rates across sites is used in relaxed clock analyses, which assumes time-reversibility and stationarity of the substitution process. Many reports have quantified the impact of violations of these underlying assumptions on molecular phylogeny, but none have systematically analyzed their impact on divergence time estimates. Results We quantified the bias on time estimates that resulted from using the GTR + Γ model for the analysis of computer-simulated nucleotide sequence alignments that were evolved with non-stationary (NS) and non-reversible (NR) substitution models. We tested Bayesian and RelTime approaches that do not require a molecular clock for estimating divergence times. Divergence times obtained using a GTR + Γ model differed only slightly (∼3% on average) from the expected times for NR datasets, but the difference was larger for NS datasets (∼10% on average). The use of only a few calibrations reduced these biases considerably (∼5%). Confidence and credibility intervals from GTR + Γ analysis usually contained correct times. Therefore, the bias introduced by the use of the GTR + Γ model to analyze datasets, in which the time-reversibility and stationarity assumptions are violated, is likely not large and can be reduced by applying multiple calibrations. Availability and implementation All datasets are deposited in Figshare: https://doi.org/10.6084/m9.figshare.12594638.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
James A. Schulte

Methods for estimating divergence times from molecular data have improved dramatically over the past decade, yet there are few studies examining alternative taxon sampling effects on node age estimates. Here, I investigate the effect of undersampling species diversity on node ages of the South American lizard clade Liolaemini using several alternative subsampling strategies for both time calibrations and taxa numbers. Penalized likelihood (PL) and Bayesian molecular dating analyses were conducted on a densely sampled (202 taxa) mtDNA-based phylogenetic hypothesis of Iguanidae, including 92 Liolaemini species. Using all calibrations and penalized likelihood, clades with very low taxon sampling had node age estimates younger than clades with more complete taxon sampling. The effect of Bayesian and PL methods differed when either one or two calibrations only were used with dense taxon sampling. Bayesian node ages were always older when fewer calibrations were used, whereas PL node ages were always younger. This work reinforces two important points: (1) whenever possible, authors should strongly consider adding as many taxa as possible, including numerous outgroups, prior to node age estimation to avoid considerable node age underestimation and (2) using more, critically assessed, and accurate fossil calibrations should yield improved divergence time estimates.


Fossil Record ◽  
2017 ◽  
Vol 20 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Kathrin Feldberg ◽  
Jiří Váňa ◽  
Alfons Schäfer-Verwimp ◽  
Michael Krings ◽  
Carsten Gröhn ◽  
...  

Abstract. A revision of the Baltic and Bitterfeld amber fossils assigned to Cylindrocolea dimorpha (Cephaloziellaceae) has yielded evidence of the presence of multicellular, bifid underleaves, which have not previously been reported for this species and conflict with the current circumscription of the family. We transfer the fossil species to Odontoschisma (sect. Iwatsukia) and propose the new combination O. dimorpha of the Cephaloziaceae. Characteristics of the fossil include an overall small size of the plant, entire-margined, bifid leaves and underleaves, more or less equally thickened leaf cell walls, ventral branching that includes stoloniform branches with reduced leaves, and the lack of a stem hyalodermis and gemmae. Placement of the fossil in Cephaloziaceae profoundly affects divergence time estimates for liverworts based on DNA sequence variation with integrated information from the fossil record. Our reclassification concurs with hypotheses on the divergence times of Cephaloziaceae derived from DNA sequence data that provide evidence of a late Early Cretaceous to early Eocene age of the Odontoschisma crown group and an origin of O. sect. Iwatsukia in the Late Cretaceous to Oligocene.


Fossil Record ◽  
2017 ◽  
Vol 20 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Julia Bechteler ◽  
Alexander R. Schmidt ◽  
Matthew A. M. Renner ◽  
Bo Wang ◽  
Oscar Alejandro Pérez-Escobar ◽  
...  

Abstract. DNA-based divergence time estimates suggested major changes in the composition of epiphyte lineages of liverworts during the Cretaceous; however, evidence from the fossil record is scarce. We present the first Cretaceous fossil of the predominantly epiphytic leafy liverwort genus Radula in ca. 100 Myr old Burmese amber. The fossil's exquisite preservation allows first insights into the morphology of early crown group representatives of Radula occurring in gymnosperm-dominated forests. Ancestral character state reconstruction aligns the fossil with the crown group of Radula subg. Odontoradula; however, corresponding divergence time estimates using the software BEAST lead to unrealistically old age estimates. Alternatively, assignment of the fossil to the stem of subg. Odontoradula results in a stem age estimate of Radula of 227.8 Ma (95 % highest posterior density (HPD): 165.7–306.7) and a crown group estimate of 176.3 Ma (135.1–227.4), in agreement with analyses employing standard substitution rates (stem age 235.6 Ma (142.9–368.5), crown group age 183.8 Ma (109.9–289.1)). The fossil likely belongs to the stem lineage of Radula subg. Odontoradula. The fossil's modern morphology suggests that switches from gymnosperm to angiosperm phorophytes occurred without changes in plant body plans in epiphytic liverworts. The fossil provides evidence for striking morphological homoplasy in time. Even conservative node assignments of the fossil support older rather than younger age estimates of the Radula crown group, involving origins for most extant subgenera by the end of the Cretaceous and diversification of their crown groups in the Cenozoic.


Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 49 ◽  
Author(s):  
Renata Capellão ◽  
Elisa Costa-Paiva ◽  
Carlos Schrago

Studies that measured mutation rates in human populations using pedigrees have reported values that differ significantly from rates estimated from the phylogenetic comparison of humans and chimpanzees. Consequently, exchanges between mutation rate values across different timescales lead to conflicting divergence time estimates. It has been argued that this variation of mutation rate estimates across hominoid evolution is in part caused by incorrect assignment of calibration information to the mean coalescent time among loci, instead of the true genetic isolation (speciation) time between humans and chimpanzees. In this study, we investigated the feasibility of estimating the human pedigree mutation rate using phylogenetic data from the genomes of great apes. We found that, when calibration information was correctly assigned to the human–chimpanzee speciation time (and not to the coalescent time), estimates of phylogenetic mutation rates were statistically equivalent to the estimates previously reported using studies of human pedigrees. We conclude that, within the range of biologically realistic ancestral generation times, part of the difference between whole-genome phylogenetic and pedigree mutation rates is due to inappropriate assignment of fossil calibration information to the mean coalescent time instead of the speciation time. Although our results focus on the human–chimpanzee divergence, our findings are general, and relevant to the inference of the timescale of the tree of life.


2021 ◽  
Author(s):  
Milan C. Samarakoon ◽  
Kevin D Hyde ◽  
Sajeewa S. N. Maharachchikumbura ◽  
Marc Stadler ◽  
E. B. Gareth Jones ◽  
...  

Abstract Xylariomycetidae ( Ascomycota ) is a highly diversified group with variable stromatic characters. Our research focused on inconspicuous stromatic xylarialean taxa from China, Italy, Russia, Thailand and the United Kingdom. Detailed morphological descriptions, illustrations and combined ITS-LSU- rpb 2- tub 2- tef 1 phylogenies revealed 38 taxa from our collections belonging to Amphisphaeriales and Xylariales . A new family ( Appendicosporaceae ), five new genera ( Magnostiolata , Melanostictus , Neoamphisphaeria , Nigropunctata and Paravamsapriya ), 27 new species ( Acrocordiella photiniicola , Allocryptovalsa sichuanensis , Amphisphaeria parvispora , Anthostomella lamiacearum , Apiospora guiyangensis , Ap. sichuanensis , Biscogniauxia magna , Eutypa camelliae , Helicogermslita clypeata , Hypocopra zeae , Magnostiolata mucida , Melanostictus longiostiolatus , Me. thailandicus , Nemania longipedicellata , Ne. delonicis , Ne. paraphysata , Ne. thailandensis , Neoamphisphaeria hyalinospora , Neoanthostomella bambusicola , Nigropunctata bambusicola , Ni. nigrocircularis , Ni. thailandica , Occultitheca rosae , Paravamsapriya ostiolata , Peroneutypa leucaenae , Seiridium italicum and Vamsapriya mucosa ) and seven new host/geographical records are introduced and reported. Divergence time estimates indicate that Delonicicolales diverged from Amphisphaeriales + Xylariales at 161 (123–197) MYA. Amphisphaeriales and Xylariales diverged 154 (117–190) MYA with a crown age of 127 (92–165) MYA and 147 (111–184) MYA, respectively. Appendicosporaceae ( Amphisphaeriales ) has a stem age of 89 (65–117) MYA. Ancestral character state reconstruction indicates that astromatic, clypeate ascomata with aseptate, hyaline ascospores that lack germ slits may probably be ancestral Xylariomycetidae having plant-fungal endophytic associations. The Amphisphaeriales remained mostly astromatic with common septate, hyaline ascospores. Stromatic variations may have developed mostly during the Cretaceous period. Brown ascospores are common in Xylariales , but they first appeared in Amphisphaeriaceae , Melogrammataceae and Sporocadaceae during the early Cretaceous. The ascospore germ slits appeared only in Xylariales during the Cretaceous after the divergence of Lopadostomataceae . Hyaline, filiform and apiospores may have appeared as separate lineages providing the basis to Xylariaceae , which may have diverged independently. The future classification of polyphyletic xylarialean taxa will not be based on stromatic variations, but the type of ring, the colour of the ascospores, and the presence or absence of the type of germ slit.


2020 ◽  
Author(s):  
Jose Barba-Montoya ◽  
Qiqing Tao ◽  
Sudhir Kumar

AbstractMotivationAs the number and diversity of species and genes grow in contemporary datasets, two common assumptions made in all molecular dating methods, namely the time-reversibility and stationarity of the substitution process, become untenable. No software tools for molecular dating allow researchers to relax these two assumptions in their data analyses. Frequently the same General Time Reversible (GTR) model across lineages along with a gamma (+Γ) distributed rates across sites is used in relaxed clock analyses, which assumes time-reversibility and stationarity of the substitution process. Many reports have quantified the impact of violations of these underlying assumptions on molecular phylogeny, but none have systematically analyzed their impact on divergence time estimates.ResultsWe quantified the bias on time estimates that resulted from using the GTR+Γ model for the analysis of computer-simulated nucleotide sequence alignments that were evolved with non-stationary (NS) and non-reversible (NR) substitution models. We tested Bayesian and RelTime approaches that do not require a molecular clock for estimating divergence times. Divergence times obtained using a GTR+Γ model differed only slightly (∼3% on average) from the expected times for NR datasets, but the difference was larger for NS datasets (∼10% on average). The use of only a few calibrations reduced these biases considerably (∼5%). Confidence and credibility intervals from GTR+Γ analysis usually contained correct times. Therefore, the bias introduced by the use of the GTR+Γ model to analyze datasets, in which the time-reversibility and stationarity assumptions are violated, is likely not large and can be reduced by applying multiple calibrations.AvailabilityAll datasets are deposited in Figshare: https://doi.org/10.6084/[email protected]


2008 ◽  
Vol 22 (3) ◽  
pp. 345 ◽  
Author(s):  
Alejandro Zaldivar-Riverón ◽  
Sergey A. Belokobylskij ◽  
Virginia León-Regagnon ◽  
Rosa Briceño-G. ◽  
Donald L. J. Quicke

The phylogenetic relationships among representatives of 64 genera of the cosmopolitan parasitic wasps of the subfamily Doryctinae were investigated based on nuclear 28S ribosomal (r) DNA (~650 bp of the D2–3 region) and cytochrome c oxidase I (COI) mitochondrial (mt) DNA (603 bp) sequence data. The molecular dating of selected clades and the biogeography of the subfamily were also inferred. The partitioned Bayesian analyses did not recover a monophyletic Doryctinae, though the relationships involved were only weakly supported. Strong evidence was found for rejecting the monophylies of both Doryctes Haliday, 1836 and Spathius Nees, 1818. Our results also support the recognition of the Rhaconotini as a valid tribe. A dispersal–vicariance analysis showed a strong geographical signal for the taxa included, with molecular dating estimates for the origin of Doryctinae and its subsequent radiation both occurring during the late Paleocene–early Eocene. The divergence time estimates suggest that diversification in the subfamily could have in part occurred as a result of continental break-up events that took place in the southern hemisphere, though more recent dispersal events account for the current distribution of several widespread taxa.


2004 ◽  
Vol 359 (1450) ◽  
pp. 1485-1494 ◽  
Author(s):  
Susanne S. Renner

Melastomataceae sensu stricto (excluding Memecylaceae) comprise some 3000 species in the neotropics, 1000 in Asia, 240 in Africa, and 230 in Madagascar. Previous family–wide morphological and DNA analyses have shown that the Madagascan species belong to at least three unrelated lineages, which were hypothesized to have arrived by trans–oceanic dispersal. An alternative hypothesis posits that the ancestors of Madagascan, as well as Indian, Melastomataceae arrived from Africa in the Late Cretaceous. This study tests these hypotheses in a Bayesian framework, using three combined sequence datasets analysed under a relaxed clock and simultaneously calibrated with fossils, some not previously used. The new fossil calibration comes from a re–dated possibly Middle or Upper Eocene Brazilian fossil of Melastomeae. Tectonic events were also tentatively used as constraints because of concerns that some of the family's fossils are difficult to assign to nodes in the phylogeny. Regardless of how the data were calibrated, the estimated divergence times of Madagascan and Indian lineages were too young for Cretaceous explanations to hold. This was true even of the oldest ages within the 95% credibility interval around each estimate. Madagascar's Melastomeae appear to have arrived from Africa during the Miocene. Medinilla , with some 70 species in Madagascar and two in Africa, too, arrived during the Miocene, but from Asia. Gravesia , with 100 species in Madagascar and four in east and west Africa, also appears to date to the Miocene, but its monophyly has not been tested. The study afforded an opportunity to compare divergence time estimates obtained earlier with strict clocks and single calibrations, with estimates based on relaxed clocks and different multiple calibrations and taxon sampling.


2020 ◽  
Author(s):  
Alexandre Hassanin ◽  
Géraldine Véron ◽  
Anne Ropiquet ◽  
Bettine Jansen van Vuuren ◽  
Alexis Lécu ◽  
...  

AbstractThe order Carnivora, which currently includes 296 species classified into 16 families, is distributed across all continents. The phylogeny and the timing of diversifications are still a matter of debate.Here, complete mitochondrial genomes were analysed to reconstruct the phylogenetic relationships and to estimate divergence times among species of Carnivora. We assembled 51 new mitogenomes from 13 families, and aligned them with available mitogenomes by selecting only those showing more than 1% of nucleotide divergence and excluding those suspected to be of low-quality or from misidentified taxa. Our final alignment included 220 taxa representing 2,442 mitogenomes. Our analyses led to a robust resolution of suprafamilial and intrafamilial relationships. We identified 22 fossil calibration points to estimate a molecular timescale for carnivorans. According to our divergence time estimates, crown carnivorans appeared during or just after the Early Eocene Climatic Optimum; all major groups of Caniformia (Cynoidea/Arctoidea; Ursidae; Musteloidea/Pinnipedia) diverged from each other during the Eocene, while all major groups of Feliformia (Nandiniidae; Feloidea; Viverroidea) diversified more recently during the Oligocene, with a basal divergence of Nandinia at the Eocene/Oligocene transition; intrafamilial divergences occurred during the Miocene, except for the Procyonidae, as Potos separated from other genera during the Oligocene.


Sign in / Sign up

Export Citation Format

Share Document