scholarly journals A Physiologically Based Pharmacokinetic Model for Naphthalene With Inhalation and Skin Routes of Exposure

2020 ◽  
Vol 177 (2) ◽  
pp. 377-391
Author(s):  
Dustin F Kapraun ◽  
Paul M Schlosser ◽  
Leena A Nylander-French ◽  
David Kim ◽  
Erin E Yost ◽  
...  

Abstract Naphthalene, a volatile organic compound present in moth repellants and petroleum-based fuels, has been shown to induce toxicity in mice and rats during chronic inhalation exposures. Although simpler default methods exist for extrapolating toxicity points of departure from animals to humans, using a physiologically based pharmacokinetic (PBPK) model to perform such extrapolations is generally preferred. Confidence in PBPK models increases when they have been validated using both animal and human in vivo pharmacokinetic (PK) data. A published inhalation PBPK model for naphthalene was previously shown to predict rodent PK data well, so we sought to evaluate this model using human PK data. The most reliable human data available come from a controlled skin exposure study, but the inhalation PBPK model does not include a skin exposure route; therefore, we extended the model by incorporating compartments representing the stratum corneum and the viable epidermis and parameters that determine absorption and rate of transport through the skin. The human data revealed measurable blood concentrations of naphthalene present in the subjects prior to skin exposure, so we also introduced a continuous dose-rate parameter to account for these baseline blood concentration levels. We calibrated the three new parameters in the modified PBPK model using data from the controlled skin exposure study but did not modify values for any other parameters. Model predictions then fell within a factor of 2 of most (96%) of the human PK observations, demonstrating that this model can accurately predict internal doses of naphthalene and is thus a viable tool for use in human health risk assessment.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 813
Author(s):  
Yoo-Seong Jeong ◽  
Min-Soo Kim ◽  
Nora Lee ◽  
Areum Lee ◽  
Yoon-Jee Chae ◽  
...  

Fexuprazan is a new drug candidate in the potassium-competitive acid blocker (P-CAB) family. As proton pump inhibitors (PPIs), P-CABs inhibit gastric acid secretion and can be used to treat gastric acid-related disorders such as gastroesophageal reflux disease (GERD). Physiologically based pharmacokinetic (PBPK) models predict drug interactions as pharmacokinetic profiles in biological matrices can be mechanistically simulated. Here, we propose an optimized and validated PBPK model for fexuprazan by integrating in vitro, in vivo, and in silico data. The extent of fexuprazan tissue distribution in humans was predicted using tissue-to-plasma partition coefficients in rats and the allometric relationships of fexuprazan distribution volumes (VSS) among preclinical species. Urinary fexuprazan excretion was minimal (0.29–2.02%), and this drug was eliminated primarily by the liver and metabolite formation. The fraction absorbed (Fa) of 0.761, estimated from the PBPK modeling, was consistent with the physicochemical properties of fexuprazan, including its in vitro solubility and permeability. The predicted oral bioavailability of fexuprazan (38.4–38.6%) was within the range of the preclinical datasets. The Cmax, AUClast, and time-concentration profiles predicted by the PBPK model established by the learning set were accurately predicted for the validation sets.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S669-S669
Author(s):  
Dung N Nguyen ◽  
Xiusheng Miao ◽  
Mindy Magee ◽  
Guoying Tai ◽  
Peter D Gorycki ◽  
...  

Abstract Background Fostemsavir (FTR) is an oral prodrug of the first-in-class attachment inhibitor temsavir (TMR) which is being evaluated in patients with multidrug resistant HIV-1 infection. In vitro studies indicated that TMR and its 2 major metabolites are inhibitors of organic cation transporters (OCT)1, OCT2, and multidrug and toxin extrusion transporters (MATEs). To assess the clinical relevance, of OCT and MATE inhibition, mechanistic static DDI prediction with calculated Imax,u/IC50 ratios was below the cut-off limits for a DDI flag based on FDA guidelines and above the cut-off limits for MATEs based on EMA guidelines. Methods Metformin is a commonly used probe substrate for OCT1, OCT2 and MATEs. To predict the potential for a drug interaction between TMR and metformin, a physiologically based pharmacokinetic (PBPK) model for TMR was developed based on its physicochemical properties, in vitro and in vivo data. The model was verified and validated through comparison with clinical data. The TMR PBPK model accurately described AUC and Cmax within 30% of the observed data for single and repeat dose studies with or without food. The SimCYP models for metformin and ritonavir were qualified using literature data before applications of DDI prediction for TMR Results TMR was simulated at steady state concentrations after repeated oral doses of FTR 600 mg twice daily which allowed assessment of the potential OCT1, OCT2, and MATEs inhibition by TMR and metabolites. No significant increase in metformin systemic exposure (AUC or Cmax) was predicted with FTR co-administration. In addition, a sensitivity analysis was conducted for either hepatic OCT1 Ki, or renal OCT2 and MATEs Ki values. The model output indicated that, a 10-fold more potent Ki value for TMR would be required to have a ~15% increase in metformin exposure Conclusion Based on mechanistic static models and PBPK modeling and simulation, the OCT1/2 and MATEs inhibition potential of TMR and its metabolites on metformin pharmacokinetics is not clinically significant. No dose adjustment of metformin is necessary when co-administered with FTR Disclosures Xiusheng Miao, PhD, GlaxoSmithKline (Employee) Mindy Magee, Doctor of Pharmacy, GlaxoSmithKline (Employee, Shareholder) Peter D. Gorycki, BEChe, MSc, PhD, GSK (Employee, Shareholder) Katy P. Moore, PharmD, RPh, ViiV Healthcare (Employee)


2021 ◽  
Vol 11 ◽  
Author(s):  
Miao Zhang ◽  
Xueting Yao ◽  
Zhe Hou ◽  
Xuan Guo ◽  
Siqi Tu ◽  
...  

In Feb 2020, we developed a physiologically-based pharmacokinetic (PBPK) model of hydroxychloroquine (HCQ) and integrated in vitro anti-viral effect to support dosing design of HCQ in the treatment of COVID-19 patients in China. This, along with emerging research and clinical findings, supported broader uptake of HCQ as a potential treatment for COVID-19 globally at the beginning of the pandemics. Therefore, many COVID-19 patients have been or will be exposed to HCQ, including specific populations with underlying intrinsic and/or extrinsic characteristics that may affect the disposition and drug actions of HCQ. It is critical to update our PBPK model of HCQ with adequate drug absorption and disposition mechanisms to support optimal dosing of HCQ in these specific populations. We conducted relevant in vitro and in vivo experiments to support HCQ PBPK model update. Different aspects of this model are validated using PK study from 11 published references. With parameterization informed by results from monkeys, a permeability-limited lung model is employed to describe HCQ distribution in the lung tissues. The updated model is applied to optimize HCQ dosing regimens for specific populations, including those taking concomitant medications. In order to meet predefined HCQ exposure target, HCQ dose may need to be reduced in young children, elderly subjects with organ impairment and/or coadministration with a strong CYP2C8/CYP2D6/CYP3A4 inhibitor, and be increased in pregnant women. The updated HCQ PBPK model informed by new metabolism and distribution data can be used to effectively support dosing recommendations for clinical trials in specific COVID-19 patients and treatment of patients with malaria or autoimmune diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Basile Amice ◽  
Harvey Ho ◽  
En Zhang ◽  
Chris Bullen

Introduction: Physiologically based pharmacokinetic (PBPK) models for the absorption, disposition, metabolism and excretion (ADME) of nicotine and its major metabolite cotinine in pregnant women (p-PBPK) are rare. The aim of this short research report is to present a p-PBPK model and its simulations for nicotine and cotinine clearance.Methods: The maternal-placental-fetal compartments of the p-PBPK model contain a total of 16 compartments representing major maternal and fetal organs and tissue groups. Qualitative and quantitative data of nicotine and cotinine disposition and clearance have been incorporated into pharmacokinetic parameters.Results: The p-PBPK model reproduced the higher clearance rates of nicotine and cotinine in pregnant women than non-pregnant women. Temporal profiles for their disposition in organs such as the brain were also simulated. Nicotine concentration reaches its maximum value within 2 min after an intravenous injection.Conclusion: The proposed p-PBPK model produces results consistent with available data sources. Further pharmacokinetic experiments are required to calibrate clearance parameters for individual organs, and for the fetus.


2019 ◽  
Vol 173 (1) ◽  
pp. 86-99 ◽  
Author(s):  
Pankajini Mallick ◽  
Marjory Moreau ◽  
Gina Song ◽  
Alina Y Efremenko ◽  
Salil N Pendse ◽  
...  

Abstract To address concerns around age-related sensitivity to pyrethroids, a life-stage physiologically based pharmacokinetic (PBPK) model, supported by in vitro to in vivo extrapolation (IVIVE) was developed. The model was used to predict age-dependent changes in target tissue exposure of 8 pyrethroids; deltamethrin (DLM), cis-permethrin (CPM), trans-permethrin, esfenvalerate, cyphenothrin, cyhalothrin, cyfluthrin, and bifenthrin. A single model structure was used based on previous work in the rat. Intrinsic clearance (CLint) of each individual cytochrome P450 or carboxylesterase (CES) enzyme that are active for a given pyrethroid were measured in vitro, then biologically scaled to obtain in vivo age-specific total hepatic CLint. These IVIVE results indicate that, except for bifenthrin, CES enzymes are largely responsible for human hepatic metabolism (>50% contribution). Given the high efficiency and rapid maturation of CESs, clearance of the pyrethroids is very efficient across ages, leading to a blood flow-limited metabolism. Together with age-specific physiological parameters, in particular liver blood flow, the efficient metabolic clearance of pyrethroids across ages results in comparable to or even lower internal exposure in the target tissue (brain) in children than that in adults in response to the same level of exposure to a given pyrethroid (Cmax ratio in brain between 1- and 25-year old = 0.69, 0.93, and 0.94 for DLM, bifenthrin, and CPM, respectively). Our study demonstrated that a life-stage PBPK modeling approach, coupled with IVIVE, provides a robust framework for evaluating age-related differences in pharmacokinetics and internal target tissue exposure in humans for the pyrethroid class of chemicals.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 108 ◽  
Author(s):  
Yoo-Seong Jeong ◽  
Anusha Balla ◽  
Kwang-Hoon Chun ◽  
Suk-Jae Chung ◽  
Han-Joo Maeng

Previous observations demonstrated that cimetidine decreased the clearance of procainamide (PA) and/or N-acetylprocainamide (NAPA; the primary metabolite of PA) resulting in the increased systemic exposure and the decrease of urinary excretion. Despite an abundance of in vitro and in vivo data regarding pharmacokinetic interactions between PA/NAPA and cimetidine, however, a mechanistic approach to elucidate these interactions has not been reported yet. The primary objective of this study was to construct a physiological model that describes pharmacokinetic interactions between PA/NAPA and cimetidine, an inhibitor of rat organic cation transporter 2 (rOCT2) and rat multidrug and toxin extrusion proteins (rMATE1), by performing extensive in vivo and in vitro pharmacokinetic studies for PA and NAPA performed in the absence or presence of cimetidine in rats. When a single intravenous injection of PA HCl (10 mg/kg) was administered to rats, co-administration of cimetidine (100 mg/kg) significantly increased systemic exposure and decreased the systemic (CL) and renal (CLR) clearance of PA, and reduced its tissue distribution. Similarly, cimetidine significantly decreased the CLR of NAPA formed by the metabolism of PA and increased the AUC of NAPA. Considering that these drugs could share similar renal secretory pathways (e.g., via rOCT2 and rMATE1), a physiologically-based pharmacokinetic (PBPK) model incorporating semi-mechanistic kidney compartments was devised to predict drug-drug interactions (DDIs). Using our proposed PBPK model, DDIs between PA/NAPA and cimetidine were successfully predicted for the plasma concentrations and urinary excretion profiles of PA and NAPA observed in rats. Moreover, sensitivity analyses of the pharmacokinetics of PA and NAPA showed the inhibitory effects of cimetidine via rMATE1 were probably important for the renal elimination of PA and NAPA in rats. The proposed PBPK model may be useful for understanding the mechanisms of interactions between PA/NAPA and cimetidine in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Siebinga ◽  
B. J. de Wit-van der Veen ◽  
J. H. Beijnen ◽  
M. P. M. Stokkel ◽  
T. P. C. Dorlo ◽  
...  

Abstract Background Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs. The aim of this study was to develop a PBPK model to describe organ distribution of 68Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs). Methods Clinical 68Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of 68Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification. Results 68Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts. Conclusions To conclude, biodistribution of 68Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.


Sign in / Sign up

Export Citation Format

Share Document