scholarly journals Acute Cardiopulmonary Alterations Induced by Fine Particulate Matter of São Paulo, Brazil

2005 ◽  
Vol 85 (2) ◽  
pp. 898-905 ◽  
Author(s):  
Dolores Helena Rodriguez Ferreira Rivero ◽  
Sandra Regina Castro Soares ◽  
Geraldo Lorenzi-Filho ◽  
Mitiko Saiki ◽  
John J. Godleski ◽  
...  
2018 ◽  
Vol 202 ◽  
pp. 253-263 ◽  
Author(s):  
Regina Maura de Miranda ◽  
Maria de Fatima Andrade ◽  
Flavia Noronha Dutra Ribeiro ◽  
Kelliton José Mendonça Francisco ◽  
Pedro José Pérez-Martínez

2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Antonio Anax Falcão de Oliveira ◽  
Tiago Franco de Oliveira ◽  
Michelle Francini Dias ◽  
Marisa Helena Gennari Medeiros ◽  
Paolo Di Mascio ◽  
...  

2016 ◽  
Vol 16 (22) ◽  
pp. 14397-14408 ◽  
Author(s):  
Beatriz Sayuri Oyama ◽  
Maria de Fátima Andrade ◽  
Pierre Herckes ◽  
Ulrike Dusek ◽  
Thomas Röckmann ◽  
...  

Abstract. This study reports emission of organic particulate matter by light-duty vehicles (LDVs) and heavy-duty vehicles (HDVs) in the city of São Paulo, Brazil, where vehicles run on three different fuel types: gasoline with 25 % ethanol (called gasohol, E25), hydrated ethanol (E100), and diesel (with 5 % biodiesel). The experiments were performed at two tunnels: Jânio Quadros (TJQ), where 99 % of the vehicles are LDVs, and RodoAnel Mário Covas (TRA), where up to 30 % of the fleet are HDVs. Fine particulate matter (PM2.5) samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively. The samples were analyzed by thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) and by thermal–optical transmittance (TOT). Emission factors (EFs) for organic aerosol (OA) and organic carbon (OC) were calculated for the HDV and the LDV fleet. We found that HDVs emitted more PM2.5 than LDVs, with OC EFs of 108 and 523 mg kg−1 burned fuel for LDVs and HDVs, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDVs and LDVs exhibited distinct features. Unique organic tracers for gasoline, biodiesel, and tire wear have been tentatively identified. nitrogen-containing compounds contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning or fast secondary production. Additionally, 70 and 65 % of the emitted mass (i.e. the OA) originates from oxygenated compounds from LDVs and HDVs, respectively. This may be a consequence of the high oxygen content of the fuel. On the other hand, additional oxygenation may occur during fuel combustion. The high fractions of nitrogen- and oxygen-containing compounds show that chemical processing close to the engine / tailpipe region is an important factor influencing primary OA emission. The thermal-desorption analysis showed that HDVs emitted compounds with higher volatility, and with mainly oxygenated and longer chain hydrocarbons than LDVs.


2020 ◽  
Author(s):  
Yazhen Gong ◽  
Shanjun Li ◽  
Nicholas Sanders ◽  
Guang Shi

2021 ◽  
pp. 106386
Author(s):  
Heyu Yin ◽  
Sina Parsnejad ◽  
Ehsan Ashoori ◽  
Hao Wan ◽  
Wen Li ◽  
...  

2001 ◽  
Vol 32 ◽  
pp. 353-354
Author(s):  
E. BRÜGGEMANN ◽  
T. GNAUK ◽  
K. MULLER ◽  
H. HERRMANN

Sign in / Sign up

Export Citation Format

Share Document