scholarly journals Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest

2005 ◽  
Vol 25 (11) ◽  
pp. 1427-1436 ◽  
Author(s):  
A. R. B. Soe ◽  
N. Buchmann
2004 ◽  
Vol 202 (1-3) ◽  
pp. 149-160 ◽  
Author(s):  
Daniel Epron ◽  
Yann Nouvellon ◽  
Olivier Roupsard ◽  
Welcome Mouvondy ◽  
André Mabiala ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 727
Author(s):  
Jesús Rodríguez-Calcerrada ◽  
Roberto Salomón ◽  
Josep Barba ◽  
Guillermo G. Gordaliza ◽  
Jorge Curiel Yuste ◽  
...  

Research Highlights: Tree decline can alter soil carbon cycling, given the close relationship between primary production and the activity of roots and soil microbes. Background and Objectives: We studied how tree decline associated to old age and accelerated by land-use change and increased drought in the last decades, affects soil properties and soil respiration (Rs). Materials and Methods: We measured Rs over two years around centennial European beech (Fagus sylvatica L.) trees representing a gradient of decline in a sub-Mediterranean forest stand, where the number of centennial beech trees has decreased by 54% in the last century. Four replicate plots were established around trees (i) with no apparent crown dieback, (ii) less than 40% crown dieback, (iii) more than 50% crown dieback, and (iv) dead. Results: Temporal variations in Rs were controlled by soil temperature (Ts) and soil water content (SWC). The increase in Rs with Ts depended on SWC. The temperature-normalized Rs exhibited a parabolic relationship with SWC, suggesting a reduced root and microbial respiration associated to drought and waterlogging. The response of Rs to SWC did not vary among tree-decline classes. However, the sensitivity of Rs to Ts was higher around vigorous trees than around those with early symptoms of decline. Spatial variations in Rs were governed by soil carbon to nitrogen ratio, which had a negative effect on Rs, and SWC during summer, when drier plots had lower Rs than wetter plots. These variations were independent of the tree vigor. The basal area of recruits, which was three times (although non-significantly) higher under declining and dead trees than under vigorous trees, had a positive effect on Rs. However, the mean Rs did not change among tree-decline classes. These results indicate that Rs and related soil physico-chemical variables are resilient to the decline and death of dominant centennial trees. Conclusions: The development of advanced regeneration as overstory beech trees decline and die contribute to the Rs homeostasis along forest succession.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alex Saturday ◽  
Thomas J. Lyimo ◽  
John Machiwa ◽  
Siajali Pamba

AbstractBackground Microbial water quality serves to indicate health risks associated with the consumption of contaminated water. Nevertheless, little is known about the microbiological characteristics of water in Lake Bunyonyi. This study was therefore undertaken to examine the spatial and temporal variations of faecal indicator bacteria (FIB) in relation to physicochemical parameters in Lake Bunyonyi. Result The FIB concentration was consistently measured during sampling months and correlated with each other showing the presumed human faecal pollution in the lake. The highest concentration values for E. coli (64.7 ± 47.3 CFU/100 mL) and enterococci (24.6 ± 32.4 CFU/100 mL were obtained in the station close to the Mugyera trading centre. On a temporal basis, the maximum values were recorded during the rainy season in October 2019 (70.7 ± 56.5 CFU/100 mL for E. coli and 38.44 ± 31.8 CFU/100 mL for enterococci. FIB did not differ significantly among the study stations (p > 0.05) but showed significant temporal variations among the months (p < 0.05) with concentrations being significantly high in wet season than dry season (U = 794, p < 0.0001 for E. coli; U = 993.5, p = 0.008 for enterococci). Spearman’s rank correlation revealed that FIB concentrations were significantly positively correlated with turbidity and DO concentration levels (p < 0.05). Approximately 97.2% of the water samples had E. coli and enterococci concentrations levels below USEPA threshold for recreational waters. Likewise, 98.1 and 90.7% of samples recorded E. coli and enterococci counts exceeding the UNBS, APHA, WHO and EU threshold values for drinking water. Conclusion The FIB counts show that the Lake Bunyonyi water is bacteriologically unsuitable for drinking unless it is treated since the FIB pose health risks to consumers. Besides, the water can be used for recreational purposes.


2003 ◽  
Vol 28 (1) ◽  
pp. 129-150 ◽  
Author(s):  
J.F. Lynch ◽  
A.E. Newhall ◽  
B. Sperry ◽  
G. Gawarkiewicz ◽  
A. Fredricks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document